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Preface to the Fourth Edition

Revised editions of books are often only minor departures from previous 
editions. In this edition, however, with the aid of a new co-author we have 
attempted a total revamp of our previously successful textbook. We did this 
because not only have twenty years passed but the statistical requirements 
of medical journals are now more rigorous and there has been an increasing 
demand for the newer statistical methods to meet new scientifi c challenges. 
Despite this, we have retained the popular approach of explaining medical 
statistics with as little technical detail as possible, so as to make the textbook 
accessible to a wide audience. In general, we have placed the, sometimes 
unavoidable, more technical aspects at the end of each chapter. We have 
updated many of the examples to give a more modern approach, but have 
retained a few classics from the earlier editions, because they so well illustrate 
the point we wish to make.

To aid the individual learner, exercises are included at the end of each 
chapter, with answers provided at the end of the book. We have concentrated 
the design issues into three chapters, concerning the design of observational 
studies, randomised clinical trials and sample size issues. Many health scien-
tists will have to validate their methods of measurement, and a new feature 
in this book is a chapter on reliability and validity.

Students of the health sciences, such as medicine, nursing, dentistry, physio-
therapy, occupational therapy, and radiography should fi nd the book useful, 
with examples relevant to their disciplines. The aim of training courses in 
medical statistics pertinent to these areas is not to turn the students into 
medical statisticians but rather to help them interpret the published scientifi c 
literature and appreciate how to design studies and analyse data arising from 
their own projects.

We envisage the book being useful in two areas. First, for consumers of 
statistics who need to be able to read the research literature in the fi eld with 



 

xii PREFACE TO THE FOURTH EDITION

a critical eye. All health science professionals need to be able to do this, but 
for many this is all they will need. We suggest that Chapters 1–7 would form 
the basis of a course for this purpose. However, some (perhaps trainee) pro-
fessionals will go on to design studies and analyse data from projects, and so, 
secondly, the book will be useful to doers of statistics, who need relatively 
straightforward methods that they can be confi dent of using. Chapters 8–15 
are aimed at this audience, though clearly they also need to be familiar with 
the earlier chapters. These students will be doing statistics on computer pack-
ages, so we have given ‘generic’ output which is typical of the major packages, 
to aid in the interpretation of the results.

We thank Lucy Sayer from Wiley for her patience, for what initially was 
simply a revision, but is now essentially a new textbook.

David Machin
Singapore and Sheffi eld and Leicester, UK

Michael J Campbell
Sheffi eld, UK

Stephen J Walters
Sheffi eld, UK

November 2006
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Summary

Statistical analysis features in the majority of papers published in health care 
journals. Most health care practitioners will need a basic understanding of 
statistical principles, but not necessarily full details of statistical techniques. 
Medical statistics can contribute to good research by improving the design 
of studies as well as suggesting the optimum analysis of the results. Medical 
statisticians should be consulted early in the planning of a study. They can 
contribute in a variety of ways at all stages and not just at the fi nal analysis 
of the data once the data have been collected.

1.1 Introduction
Most health care practitioners do not carry out medical research. However, 
if they pride themselves on being up to date then they will defi nitely be con-
sumers of medical research. It is incumbent on them to be able to discern 
good studies from bad; to be able to verify whether the conclusions of a study 
are valid and to understand the limitations of such studies. Evidence-based 
medicine (EBM) or more comprehensively evidence-based health care 
(EHBC) requires that health care practitioners consider critically all evi-
dence about whether a treatment works. As Machin and Campbell (2005) 
point out, this requires the systematic assembly of all available evidence fol-
lowed by a critical appraisal of this evidence.

A particular example might be a paper describing the results of a clinical 
trial of a new drug. A physician might read this report to try to decide 
whether to use the drug on his or her own patients. Since physicians are 
responsible for the care of their patients, it is their own responsibility to 
ensure the validity of the report, and its possible generalisation to particular 
patients. Usually, in the reputable medical press, the reader is to some extent 
protected from grossly misleading papers by a review process involving both 
specialist clinical and statistical referees. However, often there is no such 
protection in the general press or in much of the promotional literature 
sponsored by self-interested parties. Even in the medical literature, mislead-
ing results can get through the refereeing net and no journal offers a guar-
antee as to the validity of its papers.

The use of statistical methods pervades the medical literature. In a survey 
of original articles published in three UK journals of general practice; British
Medical Journal (General Practice Section), British Journal of General Prac-
tice and Family Practice; over a 1-year period, Rigby et al (2004) found that 
66% used some form of statistical analysis. It appears, therefore, that the 
majority of papers published in these journals require some statistical knowl-
edge for a complete understanding.

2 USES AND ABUSES OF MEDICAL STATISTICS



 

Statistics is not only a discipline in its own right but it is also a fundamental 
tool for investigation in all biological and medical science. As such, any 
serious investigator in these fi elds must have a grasp of the basic principles. 
With modern computer facilities there is little need for familiarity with the 
technical details of statistical calculations. However, a health care profes-
sional should understand when such calculations are valid, when they are not 
and how they should be interpreted.

1.2 Why use statistics?
To students schooled in the ‘hard’ sciences of physics and chemistry it 
may be diffi cult to appreciate the variability of biological data. If one repeat-
edly puts blue litmus paper into acid solutions it turns red 100% of the 
time, not most (say 95%) of the time. In contrast, if one gives aspirin to 
a group of people with headaches, not all of them will experience relief. 
Penicillin was perhaps one of the few ‘miracle’ cures where the results 
were so dramatic that little evaluation was required. Absolute certainty in 
medicine is rare.

Measurements on human subjects rarely give exactly the same results from 
one occasion to the next. For example, O’ Sullivan et al (1999), found that 
systolic blood pressure in normal healthy children has a wide range, with 95% 
of children having systolic blood pressures below 130 mmHg when they were 
resting, rising to 160 mmHg during the school day, and falling to below 
130 mmHg at night.

This variability is also inherent in responses to biological hazards. Most 
people now accept that cigarette smoking causes lung cancer and heart 
disease, and yet nearly everyone can point to an apparently healthy 80-year-
old who has smoked for 60 years without apparent ill effect.

Although it is now known from the report of Doll et al (2004) that about 
half of all persistent cigarette smokers are killed by their habit, it is usually 
forgotten that until the 1950s, the cause of the rise in lung cancer deaths was 
a mystery and commonly associated with diesel fumes. It was not until the 
carefully designed and statistically analysed case–control and cohort studies 
of Richard Doll and Austin Bradford Hill and others, that smoking was 
identifi ed as the true cause. Enstrom and Kabat (2003) have now moved the 
debate on to whether or not passive smoking causes lung cancer. This is a 
more diffi cult question to answer since the association is weaker.

With such variability, it follows that in any comparison made in a medical 
context, differences are almost bound to occur. These differences may be due 
to real effects, random variation or both. It is the job of the analyst to decide 
how much variation should be ascribed to chance, so that any remaining 
variation can be assumed to be due to a real effect. This is the art of 
statistics.

 1.2 WHY USE STATISTICS? 3
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1.3 Statistics is about common sense and good design
A well-designed study, poorly analysed, can be rescued by a reanalysis but a 
poorly designed study is beyond the redemption of even sophisticated statisti-
cal manipulation. Many experimenters consult the medical statistician only 
at the end of the study when the data have been collected. They believe that 
the job of the statistician is simply to analyse the data, and with powerful 
computers available, even complex studies with many variables can be easily 
processed. However, analysis is only part of a statistician’s job, and calcula-
tion of the fi nal ‘p-value’ a minor one at that!

A far more important task for the medical statistician is to ensure that 
results are comparable and generalisable.

Example from the literature: Fluoridated water supplies

A classic example is the debate as to whether fl uorine in the water supply 
is related to cancer mortality. Burke and Yiamouyannis (1975) considered 
10 fl uoridated and 10 non-fl uoridated towns in the USA. In the fl uoridated 
towns, the cancer mortality rate had increased by 20% between 1950 and 
1970, whereas in the non-fl uoridated towns the increase was only 10%. 
From this they concluded that fl uoridisation caused cancer. However, 
Oldham and Newell (1977), in a careful analysis of the changes in age–
gender–ethnic structure of the 20 cities between 1950 and 1970, showed 
that in fact the excess cancer rate in the fl uoridated cities increased by 
only 1% over the 20 years, while in the unfl uoridated cities the increase 
was 4%. They concluded from this that there was no evidence that fl uori-
disation caused cancer. No statistical signifi cance testing was deemed nec-
essary by these authors, both medical statisticians, even though the paper 
appeared in a statistical journal!

In the above example age, gender and ethnicity are examples of confound-
ing variables as illustrated in Figure 1.1. In this example, the types of indi-
viduals exposed to fl uoridation depend on their age, gender and ethnic mix, 
and these same factors are also known to infl uence cancer mortality rates. It 
was established that over the 20 years of the study, fl uoridated towns were 
more likely to be ones where young, white people moved away and these are 
the people with lower cancer mortality, and so they left behind a higher risk 
population.

Any observational study that compares populations distinguished by a 
particular variable (such as a comparison of smokers and non-smokers) and 
ascribes the differences found in other variables (such as lung cancer rates) 
to the fi rst variable is open to the charge that the observed differences are in 
fact due to some other, confounding, variables. Thus, the difference in lung 



 
cancer rates between smokers and non-smokers has been ascribed to genetic 
factors; that is, some factor that makes people want to smoke also makes 
them more susceptible to lung cancer. The diffi culty with observational 
studies is that there is an infi nite source of confounding variables. An inves-
tigator can measure all the variables that seem reasonable to him but a critic 
can always think of another, unmeasured, variable that just might explain the 
result. It is only in prospective randomised studies that this logical diffi culty 
is avoided. In randomised studies, where exposure variables (such as alterna-
tive treatments) are assigned purely by a chance mechanism, it can be assumed 
that unmeasured confounding variables are comparable, on average, in the 
two groups. Unfortunately, in many circumstances it is not possible to ran-
domise the exposure variable as part of the experimental design, as in the 
case of smoking and lung cancer, and so alternative interpretations are always 
possible. Observational studies are further discussed in Chapter 12.

1.4 Types of data
Just as a farmer gathers and processes a crop, a statistician gathers and pro-
cesses data. For this reason the logo for the UK Royal Statistical Society is 
a sheaf of wheat. Like any farmer who knows instinctively the difference 
between oats, barley and wheat, a statistician becomes an expert at discerning 
different types of data. Some sections of this book refer to different data 
types and so we start by considering these distinctions. Figure 1.2 shows a 
basic summary of data types, although some data do not fi t neatly into these 
categories.

EXPOSURE

Fluoridisation

Confounding Factor(s)

Age, gender, ethnicity

OUTCOME

Cancer mortality

Figure 1.1 Graphical representation of how confounding variables may infl uence both 
exposure to fl uoridisation and cancer mortality

Example from the literature: Risk factors for endometrial cancer

Table 1.1 gives a typical table reporting baseline characteristics of a set of 
patients entered into a case–control study which investigated risk factors 
for endometrial cancer (Xu et al, 2004). We will discuss the different types 
of data given in this paper.

 1.4 TYPES OF DATA 5
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Categorical or qualitative data

Nominal categorical data Nominal or categorical data are data that one 
can name and put into categories. They are not measured but simply 
counted. They often consist of unordered ‘either–or’ type observations 
which have two categories and are often know as binary. For example: 
Dead or Alive; Male or Female; Cured or Not Cured; Pregnant or Not 
Pregnant. In Table 1.1 having a fi rst-degree relative with cancer, or taking 
regular exercise are binary variables. However, categorical data often 
can have more that two categories, for example: blood group O, A, B, 
AB, country of origin, ethnic group or eye colour. In Table 1.1 marital 
status is of this type. The methods of presentation of nominal data are 
limited in scope. Thus, Table 1.1 merely gives the number and percentage 
of people by marital status.

Ordinal data If there are more than two categories of classifi cation it may 
be possible to order them in some way. For example, after treatment a patient 
may be either improved, the same or worse; a woman may never have con-
ceived, conceived but spontaneously aborted, or given birth to a live infant. 
In Table 1.1 education is given in three categories: none or elementary 
school, middle school, college and above. Thus someone who has been to 
middle school has more education than someone from elementary school but 

Variable

Categorical Numerical

Nominal

Categories 
are mutually 
exclusive and 
unordered

Examples: 
gender,
blood group, 
eye colour, 
marital status

Ordinal

Categories 
are mutually 
exclusive and 
ordered

Examples: 
disease 
stage, 
social class,
education 
level 

Counts

Integer 
values

Examples:
days sick per 
year, 
number of 
pregnancies

Measured

(continuous)
Takes any 
value in a 
range of 
values

Examples: 
weight in kg, 
height in m
age (in years, 
hours, 
minutes…)

Qualitative Quantitative

Figure 1.2 Broad classifi cation of the different types of data with examples



 

less than someone from college. However, without further knowledge it 
would be wrong to ascribe a numerical quantity to position; one cannot say 
that someone who had middle school education is twice as educated as 
someone who had only elementary school education. This type of data is also 
known as ordered categorical data.

Ranks In some studies it may be appropriate to assign ranks. For example, 
patients with rheumatoid arthritis may be asked to order their preference for 

Table 1.1 Demographic characteristics and selected risk factors for endometrial cancer. 
Values are numbers (percentages) unless stated otherwise 

Characteristic Cases Controls

Number of women (n) 832 846
Mean (SD) age (years)  55.3 (8.60)  55.7 (8.58)
Education
 No formal education or just 204 (24.5) 234 (27.7)
  elementary school
 Middle school 503 (60.5) 513 (60.6)
 College and above 125 (15.0)  99 (11.7)
Marital status
 Unmarried  14 (1.7)  10 (1.2)
 Married or cohabiting 724 (87.0) 742 (87.7)
 Separated, divorced, or widowed  94 (11.3)  94 (11.1)
Per capita income in previous year (yuan)

≤4166.7 230 (27.7) 244 (28.9)
 4166.8–6250.3 243 (29.2) 242 (28.6)
 6250.4–8333.3  57 (6.9)  50 (5.9)

≥8333.3 301 (36.2) 309 (36.6)
No of pregnancies
 None  62 (7.5)  35 (4.1)
 1 137 (16.5) 109 (12.9)
 2 199 (23.9) 208 (24.6)
 3 194 (23.3) 207 (24.5)
 4 141 (17.0) 157 (18.6)

≥5  99 (11.9) 130 (15.4)
Cancer among fi rst degree relatives 289 (34.7) 228 (27.0)
Oral contraceptive use 147 (17.7) 207 (24.5)
Regular exercise 253 (30.4) 287 (33.9)
Age at menarche*  14 (13 to 16)  15 (13 to 16)
Age at menopause (among  50.1 (48.6 to 52.5)  49.4 (47.1 to 51.1)
 postmenopausal women)*
Body mass index*  25.1 (22.7 to 27.9)  23.7 (21.4 to 26.3)

From Xu et al (2004). Soya food intake and risk of endometrial cancer among Chinese women in 
Shanghai: population-based case–control study. British Medical Journal, 328, 1285–1291: reproduced 
by permission of the BMJ Publishing Group.
*Median (25th to 75th centile).

 1.4 TYPES OF DATA 7
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four dressing aids. Here, although numerical values from 1 to 4 may be 
assigned to each aid, one cannot treat them as numerical values. They are in 
fact only codes for best, second best, third choice and worst.

Numerical or quantitative data

Count data Table 1.1 gives details of the number of pregnancies each woman 
had had, and this is termed count data. Other examples are often counts per 
unit of time such as the number of deaths in a hospital per year, or the 
number of attacks of asthma a person has per month. In dentistry, a common 
measure is the number of decayed, fi lled or missing teeth (DFM).

Measured or numerical continuous Such data are measurements that can, 
in theory at least, take any value within a given range. These data contain 
the most information, and are the ones most commonly used in statistics. 
Examples of continuous data in Table 1.1 are: age, years of menstruation and 
body mass index.

However, for simplicity, it is often the case in medicine that continuous 
data are dichotomised to make nominal data. Thus diastolic blood pressure, 
which is continuous, is converted into hypertension (>90 mmHg) and normo-
tension (≤90 mmHg). This clearly leads to a loss of information. There are 
two main reasons for doing this. It is easier to describe a population by the 
proportion of people affected (for example, the proportion of people in the 
population with hypertension is 10%). Further, one often has to make a deci-
sion: if a person has hypertension, then they will get treatment, and this too 
is easier if the population is grouped.

One can also divide a continuous variable into more than two groups. In 
Table 1.1 per capita income is a continuous variable and it has been divided 
into four groups to summarise it, although a better choice may have been to 
split at the more convenient and memorable intervals of 4000, 6000 and 8000 
yuan. The authors give no indication as to why they chose these cut-off 
points, and a reader has to be very wary to guard against the fact that the 
cuts may be chosen to make a particular point.

Interval and ratio scales

One can distinguish between interval and ratio scales. In an interval scale,
such as body temperature or calendar dates, a difference between two mea-
surements has meaning, but their ratio does not. Consider measuring tem-
perature (in degrees centigrade) then we cannot say that a temperature of 
20°C is twice as hot as a temperature of 10°C. In a ratio scale, however, such 
as body weight, a 10% increase implies the same weight increase whether 
expressed in kilograms or pounds. The crucial difference is that in a ratio 



 

scale, the value of zero has real meaning, whereas in an interval scale, the 
position of zero is arbitrary.

One diffi culty with giving ranks to ordered categorical data is that one 
cannot assume that the scale is interval. Thus, as we have indicated when 
discussing ordinal data, one cannot assume that risk of cancer for an indi-
vidual educated to middle school level, relative to one educated only to 
primary school level is the same as the risk for someone educated to college 
level, relative to someone educated to middle school level. Were Xu et al 
(2004) simply to score the three levels of education as 1, 2 and 3 in their 
subsequent analysis, then this would imply in some way the intervals have 
equal weight.

1.5 How a statistician can help
Statistical ideas relevant to good design and analysis are not easy and we 
would always advise an investigator to seek the advice of a statistician at an 
early stage of an investigation. Here are some ways the medical statistician 
might help.

Sample size and power considerations

One of the commonest questions asked of a consulting statistician is: How 
large should my study be? If the investigator has a reasonable amount of 
knowledge as to the likely outcome of a study, and potentially large resources 
of fi nance and time, then the statistician has tools available to enable a 
scientifi c answer to be made to the question. However, the usual scenario is 
that the investigator has either a grant of a limited size, or limited time, or a 
limited pool of patients. Nevertheless, given certain assumptions the medical 
statistician is still able to help. For a given number of patients the probability 
of obtaining effects of a certain size can be calculated. If the outcome variable 
is simply success or failure, the statistician will need to know the anticipated 
percentage of successes in each group so that the difference between them 
can be judged of potential clinical relevance. If the outcome variable is a 
quantitative measurement, he will need to know the size of the difference 
between the two groups, and the expected variability of the measurement. 
For example, in a survey to see if patients with diabetes have raised blood 
pressure the medical statistician might say, ‘with 100 diabetics and 100 healthy 
subjects in this survey and a possible difference in blood pressure of 5 mmHg, 
with standard deviation of 10 mmHg, you have a 20% chance of obtaining a 
statistically signifi cant result at the 5% level’. (The term ‘statistically signifi -
cant’ will be explained in Chapter 7.) This statement means that one would 
anticipate that in only one study in fi ve of the proposed size would a statisti-
cally signifi cant result be obtained. The investigator would then have to 

 1.5 HOW A STATISTICIAN CAN HELP 9
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decide whether it was sensible or ethical to conduct a trial with such a small 
probability of success. One option would be to increase the size of the survey 
until success (defi ned as a statistically signifi cant result if a difference of 
5 mmHg or more does truly exist) becomes more probable.

Questionnaires

Rigby et al (2004), in their survey of original articles in three UK general 
practice journals, found that the most common design was that of a cross-
sectional or questionnaire survey, with approximately one third of the articles 
classifi ed as such.

For all but the smallest data sets it is desirable to use a computer for sta-
tistical analysis. The responses to a questionnaire will need to be easily coded 
for computer analysis and a medical statistician may be able to help with this. 
It is important to ask for help at an early stage so that the questionnaire can 
be piloted and modifi ed before use in a study. Further details on question-
naire design and surveys are given in Chapter 12.

Choice of sample and of control subjects

The question of whether one has a representative sample is a typical problem 
faced by statisticians. For example, it used to be believed that migraine was 
associated with intelligence, perhaps on the grounds that people who used 
their brains were more likely to get headaches but a subsequent population 
study failed to reveal any social class gradient and, by implication, any 
association with intelligence. The fallacy arose because intelligent people 
were more likely to consult their physician about migraine than the less 
intelligent.

In many studies an investigator will wish to compare patients suffering 
from a certain disease with healthy (control) subjects. The choice of the 
appropriate control population is crucial to a correct interpretation of the 
results. This is discussed further in Chapter 12.

Design of study

It has been emphasised that design deserves as much consideration as analy-
sis, and a statistician can provide advice on design. In a clinical trial, for 
example, what is known as a double-blind randomised design is nearly always 
preferable (see Chapter 13), but not always achievable. If the treatment is 
an intervention, such as a surgical procedure it might be impossible to prevent 
individuals knowing which treatment they are receiving but it should be pos-
sible to shield their assessors from knowing. We also discuss methods of 
randomisation and other design issues in Chapter 13.



 

Laboratory experiments

Medical investigators often appreciate the effect that biological variation has 
in patients, but overlook or underestimate its presence in the laboratory. In 
dose–response studies, for example, it is important to assign treatment at 
random, whether the experimental units are humans, animals or test tubes. 
A statistician can also advise on quality control of routine laboratory 
measurements and the measurement of within- and between-observer 
variation.

Displaying data

A well-chosen fi gure or graph can summarise the results of a study very con-
cisely. A statistician can help by advising on the best methods of displaying 
data. For example, when plotting histograms, choice of the group interval can 
affect the shape of the plotted distribution; with too wide an interval impor-
tant features of the data will be obscured; too narrow an interval and random 
variation in the data may distract attention from the shape of the underlying 
distribution. Advice on displaying data is given in Chapters 2 and 3.

Choice of summary statistics and statistical analysis

The summary statistics used and the analysis undertaken must refl ect the 
basic design of the study and the nature of the data. In some situations, for 
example, a median is a better measure of location than a mean. (These terms 
are defi ned in Chapter 3.) In a matched study, it is important to produce an 
estimate of the difference between matched pairs, and an estimate of the 
reliability of that difference. For example, in a study to examine blood pres-
sure measured in a seated patient compared with that measured when he is 
lying down, it is insuffi cient simply to report statistics for seated and lying 
positions separately. The important statistic is the change in blood pressure 
as the patient changes position and it is the mean and variability of this dif-
ference that we are interested in. This is further discussed in Chapter 8. A 
statistician can advise on the choice of summary statistics, the type of analysis 
and the presentation of the results.

1.6 Further reading
Swinscow and Campbell (2002) is an introductory text, which concentrates 
mainly on the analysis of studies, while Bland (2000) and Campbell (2006) 
are intermediate texts. Altman (1991) and Armitage et al (2002) give length-
ier and more detailed accounts. Machin and Campbell (2005) focus on the 
design, rather than analysis, of medical studies in general.
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1.7 Exercises

1. Consider a survey of nurses’ opinions of their working conditions. What 
type of variables are: (i) length of service (ii) staff grade (iii) age (iv) salary 
(v) number of patients seen in a day (vi) possession of a degree.

2. What differences do you think are there in a discrete measurement such 
as shoe size, and a discrete measurement such as family size?

3. Many continuous variables are dichotomised to make them easier to 
understand e.g. obesity (body mass index >30 kg/m2) and anaemia 
(haemoglobin level <10 g/dl). What information is lost in this process? If 
you were told that a patient was anaemic, what further information would 
you want before treating the patient? How does a label, such as anaemia, 
help?
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Summary

This chapter illustrates methods of summarising and displaying binary and 
categorical data. It covers proportions, risk and rates, relative risk, and odds 
ratios. The importance of considering the absolute risk difference as well as 
the relative risk is emphasized. Data display covers contingency tables, bar 
charts and pie charts.

2.1 Summarising categorical data
Binary data are the simplest type of data. Each individual has a label 
which takes one of two values. A simple summary would be to count 
the different types of label. However, a raw count is rarely useful. Furness 
et al (2003) reported more accidents to white cars than to any other 
colour car in Auckland, New Zealand over a 1-year period. As a conse-
quence, a New Zealander may think twice about buying a white car! 
However, it turns out that there are simply more white cars on the Auckland 
roads than any other colour. It is only when this count is expressed 
as a proportion that it becomes useful. When Furness et al (2003) looked 
at the proportion of white cars that had accidents compared to the propor-
tion of all cars that had accidents, they found the proportions very similar 
and so white cars are not more dangerous than other colours. Hence the 
fi rst step to analysing categorical data is to count the number of observa-
tions in each category and express them as proportions of the total sample 
size. Proportions are a special example of a ratio. When time is also involved 
(as in counts per year) then it is known as a rate. These distinctions are given 
below.

Ratios, proportions, percentages, risk and rates

A ratio is simply one number divided by another. If we measure the weight 
of a person (in kg/) and the height (in metres), then the ratio of weight to 
height2 is the Body Mass Index.

Proportions are ratios of counts where the numerator (the top number) 
is a subset of the denominator (the bottom number). Thus in a study of 
50 patients, 30 are depressed, so the proportion is 30/50 or 0.6. It is usually 
easier to express this as a percentage, so we multiply the proportion by 
100, and state that 60% of the patients are depressed. A proportion is 
known as a risk if the numerator counts events which happen prospec-
tively. Hence if 300 students start nursing school and 15 drop out before 
fi nals, the risk of dropping out is 15/300 = 0.05 or 5%.



 
Illustrative example: Special care baby unit

Simpson (2004) describes a prospective study, in which 98 preterm infants 
were given a series of tests shortly after they were born, in an attempt to 
predict their outcome after 1 year. We will use this example in this chapter 
and in Chapter 3 where we discuss quantitative data. One categorical vari-
able recorded was the type of delivery. in fi ve categories as displayed in 
Table 2.1. The fi rst column shows category names, whilst the second shows 
the number of individuals in each category together with its percentage 
contribution to the total.

In addition to tabulating each variable separately, we might be 
interested in whether the type of delivery is related to the gender of 
the baby. Table 2.2 shows the distribution of type of delivery by gender; 
in this case it can be said that delivery type has been cross-tabulated
with gender. Table 2.2 is an example of a contingency table with fi ve 
rows (representing type of delivery) and two columns (gender). Note 
that we are interested in the distribution of modes of delivery within 
gender, and so the percentages add to 100 down each column, rather than 
across the rows.

Table 2.1 Type of delivery for 98 babies admitted to a special care baby unit (Simpson, 
2004)

Type of delivery Frequency Percentage

Standard vaginal delivery 38  39
Assisted vaginal delivery 10  10
Elective caesarean section  8  8
Emergency caesarean section 13  13
Emergency caesarean section/ not in labour 29  30
Total 98 100

Reproduced by permission of AG Simpson.

Rates always have a time period attached. If 600 000 people in the UK 
die in one year, out of a population of 60 000 000, the death rate is 
600 000/60 0000 000 or 0.01 deaths per person per year. This is known as the 
crude death rate (crude because it makes no allowance for important 
factors such as age). Crude death rates are often expressed as deaths per 
thousand per year, so the crude death rate is 10 deaths per thousand per 
year, since it is much easier to imagine 1000 people, of whom 10 die, than 
it is 0.01 deaths per person! We will discuss these issues in more details in 
Section 12.2.

 2.1 SUMMARISING CATEGORICAL DATA 15
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Labelling binary outcomes

For binary data it is common to call the outcome ‘an event’ and ‘a non-event’. 
So having a car accident in Auckland, New Zealand may be an ‘event’. We 
often score an ‘event’ as 1 and a ‘non-event’ as 0. These may also be referred 
to as a ‘positive’ or ‘negative’ outcome or ‘success’ and ‘failure’. It is impor-
tant to realise that these terms are merely labels and the main outcome of 
interest might be a success in one context and a failure in another. Thus in a 
study of a potentially lethal disease the outcome might be death, whereas in 
a disease that can be cured it might be being alive.

Comparing outcomes for binary data

Many studies involve a comparison of two groups. We may wish to combine 
simple summary measures to give a summary measure which in some way 
shows how the groups differ. Given two proportions one can either subtract 
one from the other, or divide one by the other.

Suppose the results of a clinical trial, with a binary categorical outcome 
(positive or negative), to compare two treatments (a new test treatment 
versus a control) are summarised in a 2 × 2 contingency table as in Table 2.3. 
Then the results of this trial can be summarised in a number of ways.

Table 2.2 Type of delivery and gender of 98 babies admitted to a special care baby unit 
(Simpson, 2004)

Type of delivery Gender

 Male Female
n (%) n (%)

Standard vaginal delivery 15 (33) 23 (43)
Assisted vaginal delivery  4 (9)  6 (11)
Elective caesarean section  4 (9)  4 (8)
Emergency caesarean section  6 (13)  7 (13)
Emergency caesarean section/not in labour 16 (36) 13 (25)
Total 45 (100) 53 (100)

Reproduced by permission of AG Simpson.

Table 2.3 Example of 2 × 2 contingency table with a binary 
outcome and two groups of subjects 

Outcome Treatment group

 Test Control

Positive a b
Negative c d

a + c b + d



 

Each of the above measures summarises the study outcomes, and the one 
chosen may depend on how the test treatment behaves relative to the control. 
Commonly, one may chose an absolute risk difference for a clinical trial and 
a relative risk for a prospective study. In general the relative risk is indepen-
dent of how common the risk factor is. Smoking increases one’s risk of lung 
cancer by a factor of 10, and this is true in countries with a high smoking 
prevalence and countries with a low smoking prevalence. However, in a clini-
cal trial, we may be interested in what reduction in the proportion of people 
with poor outcome a new treatment will make.

Summarising comparative binary data: Differences in proportions, 
and relative risk

From Table 2.3, the proportion of subjects with a positive outcome under

the active or test treatment is p
a

a c
Test =

+
 and under the control treatment

is p
b

b d
Control =

+
.

The difference in proportions is given by

d p pprop Test Control= − .

In prospective studies the proportion is also known as a risk. When one 
ignores the sign, the above quantity is also known as the absolute risk dif-
ference (ARD), that is

ARD p p= −Control Test ,

where the symbols |·| mean to take the absolute value.
If we anticipate that the treatment to reduce some bad outcome (such 

as deaths) then it may be known as the absolute risk reduction (ARR).
The risk ratio, or relative risk (RR), is

RR p p= Test Control.

A further summary measure, used only in clinical trials is the number
needed to treat/harm. This is defi ned as the inverse of the ARD. We will 
discuss it further in Chapter 13, where we will consider clinical trials in 
more detail.
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The ways of summarising the data presented in Table 2.3 are given below.
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Example: Importance of considering both absolute risk reduction and 
relative risk

Women aged 15–45 not on the contraceptive pill have a risk of deep 
vein thrombosis (DVT) of about 20 per 100 000 women per year. Consider 
a contraceptive pill which increases the risk to 40 per 100 000 per 
year. The relative risk of DVT for the new pill is 2, which would seem 
a large risk. However, the increase in risk is 20/100 000 = 0.00002, or 
an additional 2 women with DVTs in 10 000 years of exposure. This 
risk is very small and hence may be considered worthwhile, when 
balanced against other factors such as cost or convenience. Also, it is 
worth mentioning that a pregnant woman has a risk of a DVT of about 
80 per 100 000 per year. When one reads in the papers about a new risk 
to health that has been discovered, often only the relative risk is quoted, 
but one should ask about the absolute risk difference, which is often neg-
ligible. If you are at very low risk, then you will remain at very low 
risk even when exposed to a hazard, unless the relative risk for the hazard 
is enormous!

Example: Summarising results from a clinical trial – smoking cessation

Table 2.4 shows the results of a randomised controlled trial conducted by 
Quist-Pauslen and Gallefoss (2003) to determine whether a nurse-led 
smoking cessation intervention can improve smoking cessation rates in 
patients admitted for coronary heart disease. There are two study groups: 
the control group (randomised to receive usual care) and the experimental 
or intervention group (randomised to receive a booklet and which empha-
sised the health benefi ts of quitting smoking after a coronary event). The 
main outcome measure was smoking cessation rates at 1 year determined 
by self-report and biomedical verifi cation.

The proportion of patients who stopped smoking in the Intervention 
group is 57/100 = 0.57 and in the Control group 44/118 = 0.37 or a differ-
ence of 0.20 or 20%. If we started with 100 women in each arm we would 
expect 20 fewer patients smoking in the intervention arm compared to the 
control at the end of the study.

The Relative Risk is 0.57/0.37 = 1.5. This is the risk of stopping smoking 
(a good thing) with the intervention compared to the control group. Thus 
patients with coronary heart disease are 1.5 times more likely to stop 
smoking in the intervention group than the control group.



 
Summarising binary data – odds and odds ratios

A further method of summarising the results is to use the odds of an event 
rather than the probability. The odds of an event are defi ned as the ratio 
of the probability of occurrence of the event to the probability of non-
 occurrence, that is, p/(1 − p).

Using the notation of Table 2.3 we can see that the odds of an outcome 
for the test group to the odds of an outcome for control group is the ratio of 
odds for test group to the odds for control group:

The odds ratio (OR) is

p
p

p
p

Test

Test

Control

Control1 1−
⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟
.

The odds ratio (OR) from Table 2.3 is

OR
a
c

b
d

ad
bc

Test Control = ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ = .

When the probability of an event happening is rare, the odds and probabili-
ties are close, because then a is much smaller than c and so a/(a + c) is 
approximately a/c and b is much smaller than d and so b/(b + d) is approxi-
mately b/d. Thus the OR approximates the RR when the successes are 
rare (say with a maximum incidence less than 10% of either pTest or pControl)
Sometime the odds ratio is referred to as ‘the approximate relative risk’. 
The approximation is demonstrated in Table 2.5.

Why should one use the odds ratio?

The calculation for an odds ratio (OR) may seem rather perverse, given that 
we can calculate the relative risk directly from the 2 × 2 table and the odds 
ratio is only an approximation of this. However, the OR appears quite often 
in the literature, so it is important to be aware of it. It has certain mathemati-
cal properties that render it attractive as an alternative to the RR as a 
summary measure. Indeed, some statisticians argue that the odds ratio is the 
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Table 2.4 Smoking cessation rates at one year in patients with coronary heart disease

Stopped Intervention Control
Smoking

n % n %

Yes  57  57  44  37
No  43  43  74  63
 100 100 118 100

From Quist-Paulsen and Gallefoss (2003). Randomised controlled trial of smoking cessation inter-
vention after admission for coronary heart disease. British Medical Journal, 327, 1254–1257: repro-
duced by permission of the BMJ Publishing Group.
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natural parameter and the relative risk merely an approximation. The OR 
features in logistic regression (see Section 9.6) and as a natural summary 
measure for case–control studies (see Section 12.8). 

Table 2.5 Comparison of RR and OR for different baseline 
rates

pTest pControl RR OR RR and OR

0.05 0.1 0.5 0.47 Close
0.1 0.2 0.5 0.44 Close
0.2 0.4 0.5 0.38 Not close
0.4 0.2 2 2.66 Not close
0.2 0.1 2 2.25 Close
0.1 0.05 2 2.11 Close

Table 2.6 Results of study on cannabis use and psychosis 
(Henquet et al, 2005)

Psychosis Cannabis use Total

 Yes No

Yes  82  342  424
No 238 1775 2013
Total 320 2117 2437

Example from the literature: Cohort study – psychosis and cannabis

Henquet et al (2005) took a random sample of 2437 normal adolescents 
and questioned them about their use of cannabis. They followed them up 
4 years later and asked about psychotic symptoms. The results are sum-
marised in Table 2.6.

The risk of psychosis for non-cannabis users is 342/2117 = 0.16, while 
the risk of psychosis for cannabis users is 82/320 = 0.26. Thus the relative 
risk of psychosis for cannabis smokers is 0.26/0.16 = 1.625 or an increased 
risk of 62.5%.

The odds ratio of psychosis for cannabis smokers is (82 × 1775)/
(342 × 238) = 1.79, which is close to the relative risk. This is because the 
chance of getting psychosis is still reasonably small. This is the result 
quoted by Henquet et al (2005), who used ORs because they analysed the 
data using logistic regression (see Section 9.6).



 

One point about the OR that can be seen immediately from the formula is that 
the OR for Failure as opposed to the OR for Success in Table 2.3 is given by 
OR = bc/ad. Thus the OR for Failure is just the inverse of the OR for Success.

Thus in the cannabis and psychosis study, the odds ratio of not developing 
psychosis for the cannabis group is 1/1.79 = 0.56. In contrast the relative risk 
of not developing psychosis is (1 − 0.26)/(1 − 0.16) = 0.88, which is not the 
same as the inverse of the relative risk of developing psychosis for the 
cannabis group which is 1/1.625 = 0.62.

This symmetry of interpretation of the OR is one of the reasons for its 
continued use.

2.2 Displaying categorical data
Categorical data may be displayed using either a bar chart or a pie chart.
Figure 2.1 shows a bar chart of type of delivery for the 98 babies in the 

Figure 2.1 Bar chart showing type of delivery for 98 babies admitted to a special care 
baby unit (Simpson, 2004). Reproduced by permission of AG Simpson
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Simpson (2004) study. Along the horizontal axis are the different delivery 
categories whilst on the vertical axis is percentage. Each bar represents the 
percentage of the total population in that category. For example, examining 
Figure 2.1, it can be seen that the percentage of participants who had a stan-
dard vaginal delivery was about 39%.

Figure 2.2a shows the same data displayed as a pie chart. One often sees 
pie charts in the literature. However, generally they are to be avoided as they 
can be diffi cult to interpret particularly when the number of categories 
becomes greater than fi ve. In addition, unless the percentages in the individ-
ual categories are displayed (as here) it can be much more diffi cult to esti-
mate them from a pie chart than from a bar chart. For both chart types it is 
important to include the number of observations on which it is based, par-
ticularly when comparing more than one chart. Neither of these charts should 
be displayed in three dimensions (see Figure 2.2b for a three-dimensional pie 
chart). Three-dimensional charts feature in many spreadsheet packages, but 
are not recommended since they distort the information presented. They 
make it very diffi cult to extract the correct information from the fi gure, and, 
for example in Figure 2.2b the segments which appear nearer the reader are 
over emphasised.

If the sample is further classifi ed into whether or not the baby is a boy or 
a girl then it becomes impossible to present the data as a single pie or bar 
chart. We could present the data as two separate pie charts or bar charts side 
by side but it is preferably to present the data in one graph with the same 
scales and axes to make the visual comparisons easier.

In this case we could present the data as a clustered bar chart as shown in 
Figure 2.3. This clearly shows that there is a difference in the type of delivery 
experienced by mothers with male babies compared to female babies. Mothers 
with a female baby were more likely to have a normal vaginal delivery than 
mothers with a male baby. If we had used the actual counts on the vertical 

(a) Without three-dimensional effects (b) With three-dimensional effects 
(not recommended)

Figure 2.2 Pie chart showing type of delivery for 98 babies admitted to a special care 
baby unit (Simpson, 2004). Reproduced by permission of AG Simpson



 

axis, then because of the different sizes of the two groups, here, 45 male and 
53 female babies, this difference in frequencies of type of delivery between 
the two groups may not have been as obvious.

If you do use the relative frequency scale as we have, then it is recom-
mended good practice to report the actual total sample sizes for each group 
in the legend. In this way, given the total sample size and relative frequency 
(from the height of the bars) we can work out the actual numbers of mothers 
with the different types of delivery.

2.3 Points when reading the literature
In fi gures:

1. Is the number of subjects involved clearly stated?
2. Are appropriate axes clearly labelled and scales indicated?
3. Do the titles adequately describe the contents of the tables and graphs?

Figure 2.3 Clustered bar chart showing type of delivery by gender for 98 babies admitted 
to a special care baby unit (Simpson, 2004). Reproduced by permission of AG Simpson
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In tables:

1. If percentages are shown, is it clear whether they add across rows or down 
columns.

2. Percentages should not have decimals if the number of subjects in total is 
less than 100.

Summary statistics:

1. If a relative risk is quoted, what is the absolute risk difference? Is this a 
very small number? Beware of reports that only quote relative risks and 
give no hint of the absolute risk!

2. If an odds ratio is quoted, is it a reasonable approximation to the relative 
risk? (Ask what the size of the risk in the two groups are.)

2.4 Exercises

1. The blood group of 55 women diagnosed as suffering from thromboem-
bolic disease and 145 healthy women are displayed in Table 2.7.

Table 2.7 Blood group distribution for healthy women and 
those with thromboembolic disease

Blood Women with Healthy women Total
group thromboembolic
 disease

A 32  51  83
B  8  19  27
AB  6  5  11
O  9  70  79
Total 55 145 200

(i)  Display the blood group data for the 55 thromboembolic women as a 
bar chart.

(ii)  Display the blood group data for the 55 thromboembolic women and 
145 healthy women using a clustered bar chart. Can you see if there is 
a difference in the blood groups between the thromboembolic women 
and healthy women?

2. Ninety-nine pregnant women, with dystocia (diffi cult childbirth or labour), 
were allocated at random to receive immersion in water in a birth pool 
(Intervention group: Labour in water 49 women) or standard augmen-
tation for dystocia (Control group: Augmentation 50 women) in a 



 

randomised controlled trial to evaluate the impact of labouring in water 
during the fi rst stage of labour (Cluett et al, 2004). The main outcome was 
use of epidural analgesia at any stage of labour. The results are shown in 
Table 2.8.

Table 2.8 Epidural analgesia data from a randomised controlled trial of labouring in 
water compared with standard augmentation for management of dystocia in fi rst stage of 
labour (Cluett et al, 2004)

Epidural analgesia at Intervention Control
any stage of labour (Labour in water) (Augmentation)

Yes 23 33
No 26 17
Total 49 50
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(i)  What is the proportion of women that had an epidural in each of the 
two groups?

(ii)  What is the relative risk of the use of an epidural for the Labour in 
water women compared with the Augmentation women?

(iii) Calculate the OR of epidural for the Labour in water women com-
pared with Augmentation women. Compare this estimated OR with 
the RR estimate from part ii: what do you notice?

(iv)  Find the absolute risk difference for the use of an epidural for Labour 
in water compared to Augmentation.

3. A newspaper headline states that a new drug for early stage breast cancer 
reduces the risk of recurrence of the disease by 50%. What other informa-
tion would you like before deciding to take the drug?
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Summary

This chapter discusses the choice and method of calculation of measures of 
location and variation. We cover means, medians, modes, range, standard 
deviation and inter-quartile range. We also illustrate methods of graphical 
and tabular display for continuous data.

3.1 Summarising continuous data
A quantitative measurement contains more information than a categorical 
one, and so summarizing these data is more complex. One chooses summary 
statistics to condense a large amount of information into a few intelligible 
numbers, the sort that could be communicated verbally. The two most impor-
tant pieces of information about a quantitative measurement are ‘where is 
it?’ and ‘how variable is it?’ These are categorised as measures of location 
(or sometimes ‘central tendency’) and measures of spread or variability.

Measures of location

Mean or average The arithmetic mean or average of n observations x
(pronounced x bar) is simply the sum of the observations divided by their 
number; thus:

x
x

n

ii

n

= = =∑Sum of all sample values
Size of sample

1 .

In the above equation, xi represents the individual sample values and Σn
i=1xi

their sum. The Greek letter ‘Σ’ (sigma) is the Greek capital ‘S’ and stands 
for ‘sum’ and simply means ‘add up the n observations xi from the 1st to the 
last (nth)’.

Example: Calculation of the mean – birthweights

Consider the following fi ve birthweights in kilograms recorded to 1 decimal 
place selected randomly from the Simpson (2004) study of low birthweight 
babies which is described in more detail in Chapter 2.

1 2. , 1.3, 1.4, 1.5, 2.1

The sum of these observations is (1.2 + 1.3 + 1.4 + 1.5 + 2.1) = 7.5. Thus 
the mean x = 7.5/5 = 1.50 kg. It is usual to quote 1 more decimal place for 
the mean than the data recorded.



 

The major advantage of the mean is that it uses all the data values, and is, 
in a statistical sense, effi cient. The mean also characterises some important 
statistical distributions to be discussed in Chapter 4. The main disadvantage 
of the mean is that it is vulnerable to what are known as outliers. Outliers 
are single observations which, if excluded from the calculations, have notice-
able infl uence on the results. For example if we had entered ‘21’ instead of 
‘2.1’ in the calculation of the mean, we would fi nd the mean changed from 
1.50 kg to 7.98 kg. It does not necessarily follow, however, that outliers should 
be excluded from the fi nal data summary, or that they result from an errone-
ous measurement.

If the data are binary, that is nominal data that can only have two values 
which are coded 0 or 1, then x is the proportion of individuals with value 1, 
and this can also be expressed as a percentage. Thus, in Simpson’s data, if 15 
out of 98 babies were very low birthweight (<1 kg) and if this is coded as a 
‘1’ in the data set, and a ‘0’ coded for those above 1 kg, then the mean of this 
variable is 0.15 or 15%.

Median The median is estimated by fi rst ordering the data from smallest to 
largest, and then counting upwards for half the observations. The estimate 
of the median is either the observation at the centre of the ordering in the 
case of an odd number of observations, or the simple average of the middle 
two observations if the total number of observations is even.

Example: Calculation of the median – birthweights

Consider the following fi ve birthweights in kilograms selected randomly 
from the Simpson (2004) study.

Rank order Weight (kg)

1  1.2 

2  1.3 

3  1.4 

4  1.5 

5  2.1

median

If we had observed an additional value of 3.5 kg in the birthweight the 
median would be the average of the 3rd and the 4th observation in the 
ranking, namely the average of 1.4 and 1.5, which is 1.45 kg.
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The median has the advantage that it is not affected by outliers, so for 
example the median in the data would be unaffected by replacing ‘2.1’ with 
‘21’. However, it is not statistically effi cient, as it does not make use of all the 
individual data values.

Mode A third measure of location is termed the mode. This is the value 
that occurs most frequently, or, if the data are grouped, the grouping with 
the highest frequency. It is not used much in statistical analysis, since its value 
depends on the accuracy with which the data are measured; although it 
may be useful for categorical data to describe the most frequent category. 
However, the expression ‘bimodal’ distribution is used to describe a distri-
bution with two peaks in it. This can be caused by mixing two or more 
populations together. For example, height might appear to have a bimodal 
distribution if one had men and women in the population. Some illnesses may 
raise a biochemical measure, so in a population containing healthy individu-
als and those who are ill one might expect a bimodal distribution. However, 
some illnesses are defi ned by the measure of, say obesity or high blood pres-
sure, and in these cases the distributions are usually unimodal with those 
above a given value regarded as ill.

Example from the literature: Mean, median and mode

In the study by Xu et al (2004) described in Chapter 1, the mean age of the 
832 cases with cancer was 55.3 years, their median BMI was 25.1 and the 
modal marital status is the combined category ‘married or cohabiting’.

Measures of dispersion or variability

Range and interquartile range The range is given as the smallest and largest 
observations. This is the simplest measure of variability. For some data it is 
very useful, because one would want to know these numbers, for example in 
a sample the age of the youngest and oldest participant. However, if outliers 
are present it may give a distorted impression of the variability of the data, 
since only two of the data points are included in making the estimate.

Quartiles The quartiles, namely the lower quartile, the median and the 
upper quartile, divide the data into four equal parts; that is there will be 
approximately equal numbers of observations in the four sections (and exactly 
equal if the sample size is divisible by four and the measures are all distinct). 
The quartiles are calculated in a similar way to the median; fi rst order the 
data and then count the appropriate number from the bottom. The interquar-
tile range is a useful measure of variability and is given by the difference of 



 

Illustrative example: Calculation of the range, quartiles and 
interquartile range

Suppose we had 10 birthweights arranged in increasing order from the 
Simpson (2004) study.

1  1.51 

2  1.55 

3  1.79 

4  2.10 

5  2.18 

6  2.22 

7  2.37 

8  2.40  

9  2.81 

10  2.85

Lower quartile (25th percentile) 

Upper quartile (75th percentile) 

Median (50th percentile) Inter quartile

range

Order  Birthweight (kg)

The range of birthweights in these data is from 1.51 kg to 2.85 kg (simply 
the smallest and largest birthweights).

The median is the average of the 5th and 6th observations (2.18 + 2.22)/2 
= 2.20 kg. The fi rst half of the data has fi ve observations so the fi rst quartile 
is the 3rd ranked observation, namely 1.79 kg, and similarly the third 
quartile would be the 8th ranked observation, namely 2.40 kg. So the 
interquartile range is from 1.79 to 2.40 kg.
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the lower and upper quartiles. The interquartile range is not vulnerable to 
outliers, and whatever the distribution of the data, we know that 50% of them 
lie within the interquartile range.

Standard deviation and variance The standard deviation (SD or s) is calcu-
lated as follows:

SD s
x x

n

i
i

n

= =
−( )

−
=
∑ 2

1

1
.
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Illustrative example: Calculation of the standard deviation

Consider the fi ve birthweights (in kg): 1.2, 1.3, 1.4, 1.5, 2.1. The calcula-
tions to work out the standard deviation are given in the following table.

Square of 

Weight (kg) Mean Differences differences 

Weight (kg) from mean from mean 

Subject xi x xxi − ( )2xxi −

1 1.2 1.5 –0.30 0.09 

2 1.3 1.5 –0.20 0.04 

3 1.4 1.5 –0.10 0.01 

4 1.5 1.5 0.00 0.00 

5 2.1 1.5 0.60 0.36 

Totals (Sum) 7.5  0 0.50 kg2

     

Mean 1.50   Variance 0.13 kg2

    

n 5  Standard 

n − 1 4  deviation 0.35 kg 

    

Variance = 0.50/4

SD = square root of the Variance 

The expression Σn
i=1(xi − x)2 may look complicated, but it is easier to under-

stand when thought of in stages. From each x value subtract the mean x,
square this difference, then add each of the n squared differences. This sum 
is then divided by (n − 1). This expression is known as the variance. The 
variance is expressed in square units, so we take the square root to return to 
the original units, which gives the standard deviation, s. Examining this 
expression it can be seen that if all the x’s were the same, then they would 
equal x and so s would be zero. If the x’s were widely scattered about x, then 
s would be large. In this way s refl ects the variability in the data. The standard 
deviation is vulnerable to outliers, so if the 2.1 was replaced by 21 we would 
get a very different result.



 

Why is the standard deviation useful? From Simpson’s data, the mean and 
standard deviation of the birthweight of the 98 babies are 1.31 kg and 0.424 kg, 
respectively. It turns out in many situations that about 95% of observations 
will be within two standard deviations of the mean. This is known as a refer-
ence interval and it is this characteristic of the standard deviation which 
makes it so useful. It holds for a large number of measurements commonly 
made in medicine. In particular it holds for data that follow a Normal distri-
bution (see Chapter 4). For this example, this implies that the majority of 
babies will weigh between 0.46 and 2.16 kg.

Standard deviation is often abbreviated to SD in the medical literature. 

Example from the literature: Interquartile range and standard 
deviation – age of menopause

Xu et al (2004) gave the median of the age of menopause for cases as 50.1 
years and the interquartile range is 48.6 to 52.5. Thus we know that 50% 
of women experienced the menopause within a 4-year age range.

It is somewhat unfortunate that although they follow good practice and 
give the interquartile range for age at menarche and age at menopause, 
which will both have non-Normal distributions, they give the SD = 8.60 
for the age of cases at the time of study, although this too is likely to have 
a non-Normal distribution.
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We fi rst fi nd the mean to be 1.5 kg, then subtract this from each of the 
fi ve observations to get the ‘Differences from the mean’. Note that the 
sum of this column is zero. This will always be the case: the positive devia-
tions from the mean cancel the negative ones.

A convenient method of removing the negative signs is by squaring the 
deviations, which is given in the next column, which is then summed to 
get 0.50 kg2. Note that the bulk of this sum (72%) is contributed by one 
observation, the value 2.1 from subject 5, which is the observation furthest 
from the mean. This illustrates that much of the value of an SD is derived 
from the outlying observations. We now need to fi nd the average squared 
deviation. Common sense would suggest dividing by n, but it turns out 
that this actually gives an estimate of the population variance which is too 
small. This is because we use the estimated mean x in the calculation in 
place of the true population mean. In fact we seldom know the population 
mean so there is little choice but for us to use its estimated value, x, in 
the calculation (see Chapter 6). The consequence is that it is then better 
to divide by what are known as the degrees of freedom, which in this case 
is n − 1, to obtain the SD.
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Means or medians? Means and medians convey different impressions of the 
location of data, and one cannot give a prescription as to which is preferable; 
often both give useful information. If the distribution is symmetric, then in 
general the mean is the better summary statistic, and if it is skewed then the 
median is less infl uenced by the tails. If the data are skewed, then the median 
will refl ect a ‘typical’ individual better. For example if in a country median 
income is £20 000 and mean income is £24 000, most people will relate better 
to the former number.

It is sometimes stated, incorrectly, that the mean cannot be used with 
nominal, or ordered categorical data but, as we have noted before, if nominal 
data are scored 0/1 then the mean is simply the proportion of 1’s. If the data 
are ordered categorically, then again the data can be scored, say 1, 2, 3, etc., 
and a mean calculated. This can often give more useful information than a 
median for such data, but should be used with care, because of the implicit 
assumption that the change from score 1 to 2, say, has the same meaning 
(value) as the change from score 2 to 3, and so on.

3.2 Displaying continuous data
A picture is worth a thousand words, or numbers, and there is no better way 
of getting a ‘feel’ for the data than to display them in a fi gure or graph. The 
general principle should be to convey as much information as possible in the 
fi gure, with the constraint that the reader is not overwhelmed by too much 
detail.

Dot plots

The simplest method of conveying as much information as possible is to 
show all of the data and this can be conveniently carried out using a 
dot plot.

Example: Dot plot – birthweights

The data on birthweight and type of delivery are shown in Figure 3.1 as a 
dot plot. This method of presentation retains the individual subject values 
and clearly demonstrates differences between the groups in a readily 
appreciated manner. An additional advantage is that any outliers will be 
detected by such a plot. However, such presentation is not usually practi-
cal with large numbers of subjects in each group because the dots will 
obscure the details of the distribution.



 

Figure 3.1 Dot plot showing birth weight by type of delivery for 98 babies admitted to 
a special care baby unit (data from Simpson, 2004)

Histograms

The patterns may be revealed in large data set of a numerically continuous 
variable by forming a histogram with them. This is constructed by fi rst divid-
ing up the range of variable into several non-overlapping and equal intervals, 
classes or bins, then counting the number of observations in each. A histo-
gram for all the birthweights in the Simpson (2004) data is shown in Figure 
3.2. In this histogram the intervals corresponded to a width of 0.2 kg. The 
area of each histogram block is proportional to the number of subjects in the 
particular birthweight category concentration group. Thus the total area in 
the histogram blocks represents the total number of babies.

Relative frequency histograms allow comparison between histograms 
made up of different numbers of observations which may be useful when 
studies are compared.

The choice of the number and width of intervals or bins is important. Too 
few intervals and much important information may be smoothed out; too 
many intervals and the underlying shape will be obscured by a mass of con-

 3.2 DISPLAYING CONTINUOUS DATA 35



 

36 DESCRIBING AND DISPLAYING QUANTITATIVE DATA

Illustrative example: Box-whisker plot – birthweight by 
type of delivery

A box-whisker a plot is illustrated in Figure 3.3 for the birthweight 
and type of delivery from Simpson (2004). The ‘whiskers’ in the dia-
gram indicate the minimum and maximum values of the variable under 
consideration. The median value is indicated by the central horizontal 
line while the lower and upper quartiles by the corresponding horizontal 
ends of the box. The shaded box itself represents the interquartile 
range. The box-whisker plot as used here therefore displays the 
median and two measures of spread, namely the range and interquartile 
range.

Figure 3.2 Histogram of birthweight of 98 babies admitted to a special care baby unit 
(data from Simpson, 2004)

fusing detail. It is usual to choose between 5 and 15 intervals, but the correct 
choice will be based partly on a subjective impression of the resulting histo-
gram. Histograms with bins of unequal interval length can be constructed but 
they are usually best avoided.

Box-whisker plot

If the number of points is large, a dot plot can be replaced by a box-whisker 
plot which is more compact than the corresponding histogram.



 

Outlying points, 
more than 1.5
box widths from 
edge of box

Whiskers extend
to extreme data
points that are
not outliers

Maximum

Median

Minimum

Figure 3.3 Box-whisker plot of birthweight by method of delivery for 98 babies admitted 
to a special care baby unit (data from Simpson, 2004)
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Illustrative example: Scatter plot – birthweight by maternal age

A scatter plot is illustrated in Figure 3.4 for the birthweight of 98 babies 
against their mother’s age. The sloping line is the regression line (see
Chapter 9) of birthweight on maternal age.

It is clear from the almost fl at or horizontal regression line that the birth-
weight and maternal age are not associated in this sample of babies. In 
theory it is possible that maternal age may have an infl uence on birthweight, 
but vice versa cannot be the case. In this case, if one variable, x, (maternal 
age) could cause the other, y, (birthweight) then it is usual to plot the x
variable on the horizontal axis and the y variable on the vertical axis.

In contrast, if we were interested in the relationship between mothers’ 
weight and height then either variable could cause or infl uence the other. 
In this example it would be immaterial which variable (height or weight) 
is plotted on which axis.

Scatter plots

When one wishes to illustrate a relationship between two continuous vari-
ables, a scatter plot of one against the other may be informative.
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Figure 3.4 Scatter plot of birthweight by maternal age, for 98 babies admitted to a special 
care baby unit (data from Simpson, 2004)

Measures of symmetry

One important reason for producing dot plots and histograms is to get some 
idea of the shape of the distribution of the data. In Figure 3.2 there is a (slight) 
suggestion that the distribution of birthweight is not symmetric; that is if the 
distribution were folded over some central point, the two halves of the distri-
bution would not coincide. When this is the case, the distribution is termed 
skewed. A distribution is right (left) skewed if the longer tail is to the right 
(left) (see Figure 3.5). If the distribution is symmetric then the median and 
mean will be close. If the distribution is skewed then the median and inter-
quartile range are in general more appropriate summary measures than the 
mean and standard deviation, since the latter are sensitive to the skewness.

For Simpson’s birthweight data the mean from the 98 babies is 1.31 kg and 
the median is 1.34 kg so we conclude the data are reasonably symmetric. One 
is more likely to see skewness when the variables are constrained at one end 
or the other. For example waiting time or time in hospital cannot be negative, 
but can be very large for some patients and relatively short for the majority. 



 

In the data from Xu et al (2004), the median age at menopause for cases is 
50.1 years, but this is not exactly mid way between the fi rst quartile and third 
quartiles of 48.6 and 52.5 years respectively, thus indicating a skewed rather 
than a symmetric distribution.

A common skewed distribution is annual income, where a few high earners 
pull up the mean, but not the median. In the UK about 68% of the popula-
tion earn less than the average wage, that is, the mean value of annual pay 
is equivalent to the 68th percentile on the income distribution. Thus many 
people who earn more than the earnings of 50% (the median) of the popula-
tion will still feel under paid!

3.3 Within-subject variability
In Figure 3.1, measurements were made only once for each baby – the 
subject. Thus the variability, expressed, say, by the standard deviation, is the 
between-subject variability. If, however, measurements are made repeatedly 
on one subject, we are assessing within-subject variability.
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Figure 3.5 Examples of two skewed distributions

Illustrative example: Within-subject variability – resting carotid 
pulse rate

Figure 3.6 shows an example in which the resting carotid pulse rate, 
assessed by counting the beats in the neck against the second hand of a 
watch for 1 minute, was measured every 5 minutes for an hour. The 
observed pulse rate is subject to fl uctuations. The subject was at rest and 
receiving no active therapy; nevertheless there is considerable minute-to-
minute variation but little evidence of any trend over time. Such variation 
is termed within-subject variation. The within-subject standard deviation 
in this case is SD = 2.2 with a mean pulse rate of 63.0 beats/minute.
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If another subject had also done this experiment, we could calculate their 
within-subject variation as well, and perhaps compare the variabilities for the 
two subjects using these summary measures.

Successive within-subject values are unlikely to be independent, that 
is, consecutive values will be dependent on values preceding them. For 
example, if a patient with heart disease records their pulse rate, then if pulse 
rate is low on one day it is likely to be low the next. This does not imply 
that the pulse will be low, only that it is a good bet that it will be. In contrast, 
examples can be found in which high values of pulse rate are usually 
followed by lower values and vice versa. With independent observations, 
the pulse rate on one day gives no indication or clue as to the pulse rate 
on the next.

It is clear from Figure 3.6 that the pulse rates are not constant over the 
observation period. This is nearly always the case when medical observations 
or measurements are taken over time. Such variation occurs for a variety of 

Figure 3.6 Self-assessed resting carotid pulse rate as recorded every 5 minutes for 1 
minute for an hour



 

reasons. For example, pulse rate may depend critically on when the patient 
last exercised, medication, pacemakers or even on the time of day if some 
diurnal rhythm is infl uencing levels. In addition, there may be variability in 
the actual measurement of pulse rate, induced possibly by the patient’s per-
ception of pulse rate itself being subject to variation. There may be observer-
to-observer variation if the successive pulse rates were recorded by different 
personnel rather than always the patient. The possibility of recording errors 
in the laboratory, transcription errors when conveying the results to the clinic 
or for statistical analysis, should not be overlooked in appropriate circum-
stances. When only a single observation is made on one patient at one time 
only, then the infl uences of the above sources of variation are not assessable, 
but may nevertheless all be refl ected to some extent in the fi nal entry in the 
patient’s record.

Suppose successive observations on a patient taken over time fl uctuate 
around some more or less constant pulse rate, then the particular level may 
be infl uenced by factors within the patient. For example, pulse rates may be 
affected by the presence of a viral infection which is unrelated to the cause 
of the heart disease itself. Levels may also be infl uenced by the severity of 
the underlying condition and whether concomitant treatment is necessary for 
the patient. Levels could also be infl uenced by other factors, for example, 
alcohol, tobacco consumption and diet. The cause of some of the variation 
in pulse rates may be identifi ed and its effect on the variability estimated. 
Other variation may have no obvious explanation and is usually termed 
random variation. This does not necessarily imply there is no cause of this 
component of the variation but rather that its cause has not been identifi ed 
or is being ignored.

Different patients with heart disease observed in the same way may have 
differing average levels of pulse rate from each other but with similar patterns 
of variation about these levels. The variation in mean pulse rate levels from 
patient to patient is termed between-subject variation.

Observations on different subjects are usually regarded as independent. 
That is, the data values on one subject are not infl uenced by those obtained 
from another. This, however, may not always be the case, particularly with 
subjective measures in which different patients may collaborate in recording 
their pulse rate.

In the investigation of total variability it is very important to distinguish 
within-subject from between-subject variability. In a study there may be 
measures made on different individuals and also repeatedly on the same 
individual. Between- and within-subject variation will always be present in 
any biological material, whether animals, healthy subjects, patients or histo-
logical sections. The experimenter must be aware of possible sources which 
contribute to the variation, decide which are of importance in the intended 
study, and design the study appropriately.
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3.4 Presentation
Graphs
In any graph there are clearly certain items that are important. For example, 
scales should be labelled clearly with appropriate dimensions added. 
The plotting symbols are also important; a graph is used to give an im-
pression of pattern in the data, so bold and relatively large plotting 
symbols are desirable. By all means identify the position of the point 
with a fi ne pen but mark it so others can see. This is particularly impor-
tant if it is to be reduced for publication purposes or presented as a slide 
in a talk.

A graph should never include too much clutter; for example, many 
overlapping groups each with a different symbol. In such a case it is 
usually preferable to give a series of graphs, albeit smaller, in several 
panels. The choice of scales for the axes will depend on the particular 
data set. If transformations of the axes are used, for example, plotting 
on a log scale, it is usually better to mark the axes using the original 
units as this will be more readily understood by the reader. Breaks in 
scales should be avoided. If breaks are unavoidable under no circumstances 
must points on either side of a break be joined. If both axes have the 
same units, then use the same scale for each. If this cannot be done 
easily, it is sensible to indicate the line of equality, perhaps faintly in the 
fi gure. False impressions of trend or lack of it, in a time plot can sometimes 
be introduced by omitting the zero point of the vertical axis. This may 
falsely make a mild trend, for example a change from 101 to 105, into 
an apparently strong trend (seemingly as though from 1 to 5). There 
must always be a compromise between clarity of reproduction that is fi lling 
the space available with data points and clarity of message. Appropriate 
measures of variability should also be included. One such is to indicate 
the range of values covered by two standard deviations each side of a 
plotted mean.

It is important to distinguish between a bar-chart and a histogram. Bar-
charts display counts in mutually exclusive categories, and so the bars should 
have spaces between them. Histograms show the distribution of a continuous 
variable and so should not have spaces between the bars. It is not acceptable 
to use a bar-chart to display a mean with standard error bars (see Chapter 
6). These should be indicated with a data point surrounded with errors bars, 
or better still a 95% confi dence interval.

With currently available graphics software one can now perform extensive 
exploration of the data, not only to determine more carefully their structure, 
but also to fi nd the best means of summary and presentation. This is usually 
worth considerable effort.



 

Tables

Although graphical presentation is very desirable it should not be over-
looked that tabular methods are very important (see Table 1.1). In particular, 
tables can give more precise numerical information than a graph, such as 
the number of observations, the mean and some measure of variability 
of each tabular entry. They often take less space than a graph containing 
the same information. Standard statistical computer software can be easily 
programmed to provide basic summary statistics in tabular form on many 
variables.

3.5 Points when reading the literature
1. Is the number of subjects involved clearly stated?
2. Are appropriate measures of location and variation used in the paper? 

For example, if the distribution of the data is skewed, then has the median 
rather the mean been quoted? Is it sensible to quote a standard deviation, 
or would a range or interquartile range, be better? In general do not use 
SD for data which have skewed distributions.

3. On graphs, are appropriate axes clearly labelled and scales indicated?
4. Do the titles adequately describe the contents of the tables and graphs?
5. Do the graphs indicate the relevant variability? For example, if the main 

object of the study is a within-subject comparison, has within-subject vari-
ability been illustrated?

6. Does the method of display convey all the relevant information in a study? 
For example if the data are paired, is the pairing shown? Can one assess 
the distribution of the data from the information given?

3.6 Exercises
1. The age (in years) of a sample of 20 motor cyclists killed in road traffi c 

accidents is given below.

18  41  24  28  71  52  15  20  21  31 
16  24  33  44  20  24  16  64  24  32

(i)  Draw a dot plot and histogram. Is this distribution symmetric or 
skewed?

(ii) Calculate the mean, median and mode.
(iii) Calculate the range, inter quartile range and standard deviation. 

Which of these is better to describe the variability of these data?
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2. The table below shows the height of 12 fathers and their fully-grown 
sons.

Father’s height Son’s height
(cm) (cm)

190 189
184 186
183 180
182 179
179 187
178 184
175 183
174 171
170 170
168 178
165 174
164 165

(i) Draw a scatter plot of father’s height versus son’s height.
(ii)  From the graph does there appear to be a relationship between the 

two variables?
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Summary

Probability is defi ned in terms of either the long-term frequency of events, 
as model based or as a subjective measure of the certainty of an event hap-
pening. Examples of each type are given. The ideas associated with the study 
of probability are illustrated in the context of diagnostic tests. The two major 
elements associated with the clinical value of diagnostic tests are their sensi-
tivity and their specifi city. The concepts of independent events and mutually 
exclusive events are discussed, and the use of Bayes’ theorem is demon-
strated. When the result of a diagnostic test is a continuous variable, there 
may be diffi culty in deciding an appropriate cut-off point to categorise those 
with and without the condition of interest, and relative operating character-
istic (ROC) curves can be used to help with the decision.

4.1 Types of probability
There are three main ways of looking at probability which we are described 
as the ‘frequency’, ‘model-based’ and ‘subjective’ approaches as shown in 
Figure 4.1.

We all have an intuitive feel for probability but it is important to distin-
guish between probabilities applied to single individuals and probabilities 
applied to groups of individuals. Every year about 600 000 people die in 
United Kingdom. From year to year this number is stable to an extent that 
surprises some people, (see Figure 4.2) and statisticians are able to predict it 
with better than 99% accuracy. There are about 60 million people in the 
United Kingdom and for a single individual, with no information about his 
age or state of health, the chances of him or her dying in any particular year 
are 600 000/60 000 000 or about 1 in 100. This is termed the crude mortality 
rate as it ignores differences in individuals due, for example, to their gender 
or age, which are known to infl uence mortality. Thus the number of deaths 

Types of probability

Frequency Model-based Subjective

What is the probability 

of a randomly chosen person dying

in the next year?

What is the probability of 

a child being affected 

by cystic fibrosis given 

a carrier of the disease?

What is the probability

that a particular patient 

has heart disease given

they have chest pain?

Frequency Model-based Subjective

What is the probability 

of a randomly chosen person dying

in the next year?

What is the probability of 

a child being affected 

by cystic fibrosis given 

one of the parents is 

a carrier of the disease?

What is the probability

that a particular patient 

has heart disease given

they have chest pain?

Figure 4.1 Three types of probability



 

in a group can be accurately predicted but, despite this, it is not possible to 
predict exactly which of the individuals are going to die.

The basis of the idea of probability is a sequence of what are known as 
independent trials. To calculate the probability of an individual dying in 1 
year we give each one of a group of individuals a trial over a year and the 
event occurs if the individual dies. As in the previous paragraph, the estimate 
of the (crude) probability of dying is the number of deaths divided by the 
number in the original group. The idea of independence is diffi cult, but is 
based on the fact that whether or not one individual survives or dies does 
not affect the chance of another individual’s survival. On a very simple level 
and where the probability of an event is known in advance, consider tossing 
one coin 100 times. Each toss of the coin is a ‘trial’ and the event might be 
‘heads’. If the coin is unbiased, that is one which has no preference for ‘heads’ 
or ‘tails’, we would expect heads half of the time and thus say the probability 
of a head is 0.5.

Figure 4.2 Crude mortality rates in the United Kingdom from 1982 to 2002 (from ONS, 
2004). Crown copyright material is reproduced with the permission of the Controller of 
OPSI and the Queen’s Printer
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The probability of an event is the proportion of times it occurs in a long 
sequence of trials. Thus, when it is stated that the probability that an unborn 
child is male is 0.51, we base our expectation on large numbers of previous 
births. Similarly, when it is stated that patients with a certain disease have a 
50% chance of surviving 5 years, this is based on past experience of other 
patients with the same disease. In some cases a ‘trial’ may be generated by 
randomly selecting an individual from the general population, as discussed 
in Chapters 6 and 12, and examining him or her for the particular attribute 
in question. For example, suppose the prevalence of diabetes in the popula-
tion is 1%. The prevalence of a disease is the number of people in a popula-
tion with the disease at a certain time divided by the number of people in 
the population (see Chapter 12 for further details). If a trial was then con-
ducted by randomly selecting one person from the population and testing 
him or her for diabetes, the individual would be expected to be diabetic with 
probability 0.01. If this type of sampling of individuals from the population 
were repeated, then the proportion of diabetics in the total sample taken 
would be expected to be approximately 1%.

However, in some situations we can determine probabilities with-
out repeated sampling. For example, we know that the possibility of a ‘6’ 
when throwing a die is 1/6, because there are six possibilities, all equally 
likely. Nevertheless we may wish to conduct a series of trials to verify 
this fact.

In genetics, if a child has cystic fi brosis but neither parent was affected, 
then it is known that each parent must have genotype cC, where c denotes 
a cystic fi brosis gene and C denotes a normal gene. The possibility that 
one of the parents is cc is discounted, as this would imply that one 
parent had cystic fi brosis. In any subsequent child in that family there 
are four possible and equally likely genotype combinations: cc, Cc, cC
and CC. Only cc leads to the disease. Thus it is known that the probability 
of a subsequent child being affected is 1/4, and if the child is not affected 
(and so is Cc, cC or CC), the probability of being a carrier (type Cc or 
cC) is 2/3. These ‘model based’ probabilities are not based on repeated 
examinations of families with cystic fi brosis, but rather on the Mendelian 
theory of genetics.

Another type of probability is ‘subjective’ probability. When a patient 
presents with chest pains, a clinician may, after a preliminary examination, 
say that the probability that the patient has heart disease is about 20%. 
However, although the clinician does not know this yet, the individual patient 
either has or has not got heart disease. Thus at this early stage of investiga-
tion the probability is a measure of the ‘strength of the belief’ of the clinician 
in the two alternative hypotheses, that the patient has got heart disease. The 
next step is then to proceed to further examinations of the patient in order 
to modify the strength of this initial subjective belief so that he or she 



 

becomes more certain of which is the true situation – the patient has heart 
disease or the patient does not.

The three types of probability all have the following properties.

• All probabilities lie between 0 and 1.
• When the outcome can never happen the probability is 0.
• When the outcome will defi nitely happen the probability is 1.

4.2 Diagnostic tests
Uses of a diagnostic test

In making a diagnosis, a clinician fi rst establishes a possible set of diagnostic 
alternatives and then attempts to reduce these by progressively ruling out 
specifi c diseases or conditions. Alternatively, the clinician may have a strong 
hunch that the patient has one particular disease and he then sets about 
confi rming it. Given a particular diagnosis, a good diagnostic test should 
indicate either that the disease is very unlikely or that it is very probable. In 
a practical sense it is important to realise that a diagnostic test is useful only 
if the result infl uences patient management since, if the management is the 
same for two different conditions, there is little point in trying strenuously 
to distinguish between them.

Sensitivity and specifi city

Many diagnostic test results are given in the form of a continuous variable 
(that is one that can take any value within a given range), such as diastolic 
blood pressure or haemoglobin level. However, for ease of discussion we will 
fi rst assume that these have been divided into positive or negative results. 
For example, a positive diagnostic result of ‘hypertension’ is a diastolic blood 
pressure greater than 90 mmHg; whereas for ‘anaemia’, a haemoglobin level 
less than 10 g/dl is required. How to best choose these cut-off points is 
addressed later in this chapter.

For every diagnostic procedure (which may involve a laboratory test of a 
sample taken) there is a set of fundamental questions that should be asked. 
First, if the disease is present, what is the probability that the test result will 
be positive? This leads to the notion of the sensitivity of the test. Second, if 
the disease is absent, what is the probability that the test result will be nega-
tive? This question refers to the specifi city of the test. These questions can 
be answered only if it is known what the ‘true’ diagnosis is. In the case of 
organic disease this can be determined by biopsy or, for example, an expen-
sive and risky procedure such as angiography for heart disease. In other situ-
ations it may be by ‘expert’ opinion. Such tests provide the so-called ‘gold 
standard’.
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We denote a positive test result by T+, and a positive diagnosis of heart 
failure (the disease) by D+. The prevalence of heart failure in these subjects 
is (a + c)/(a + b + c + d) = 103/410 = 0.251 or approximately 25%. Thus, the 
probability of a subject chosen at random from the combined group having 
the disease is estimated to be 0.251. We can write this as p(D+) = 0.251.

The sensitivity of a test is the proportion of those with the disease who also 
have a positive test result. Thus the sensitivity is a/(a + c) = 35/103 = 0.340 or 
34%. Now sensitivity is the probability of a positive test result (event 
T+) given that the disease is present (event D+) and can be written as 
p(T+|D+) = 0.340, where the ‘|’ is read as ‘given’.

The specifi city of the test is the proportion of those without disease who 
give a negative test result. Thus the specifi city is d/(b + d) = 300/307 = 0.977 
or 98%. Now specifi city is the probability of a negative test result (event T−)
given that the disease is absent (event D−) and can be written as p(T−|D−)
= 0.977.

Since sensitivity is conditional on the disease being present, and specifi city 
on the disease being absent, in theory, they are unaffected by disease pre-
valence. For example, if we doubled the number of subjects with true 
heart failure from 103 to 206 in Table 4.1, so that the prevalence was now 
206/(410) = 50%, then we could expect twice as many subjects to give a 
positive test result. Thus 2 × 35 = 70 would have a positive result. In this case 

Table 4.1 Results of NT-proBNP assay in the general population over 45 and those with 
a previous diagnosis of heart failure (after Hobbs et al, 2002)

  Confi rmed diagnosis of heart failure

  Present Absent Total

NT-proBNP (pmol/l)  (D+) (D−)

>36 Positive (T+)  35 (a)  7 (b)  42
≤36 Negative (T−)  68 (c) 300 (d) 368
Total  103 307 410

Example from the literature: Diagnosis of heart disease

Consider the results of an assay of N-terminal pro-brain natriuretic peptide 
(NT-proBNP) for diagnosis of heart failure in a general population survey 
in those over 45 years of age and in patients with existing diagnosis of 
heart failure obtained by Hobbs et al (2002) and summarised in Table 4.1. 
Heart failure was identifi ed when NT-proBNP >36 pmol/l.



 
the sensitivity would be 70/206 = 0.34, which is unchanged from the previous 
value. A similar result is obtained for specifi city.

Sensitivity and specifi city are useful statistics because they will yield 
consistent results for the diagnostic test in a variety of patient groups with 
different disease prevalences. This is an important point; sensitivity and 
specifi city are characteristics of the test, not the population to which the test 
is applied. Although indeed they are independent of disease prevalence, in 
practice if the disease is very rare, the accuracy with which one can estimate 
the sensitivity will be limited.

Two other terms in common use are: the false negative rate (or probability 
of a false negative) which is given by c/(a + c) = 1 − Sensitivity, and 
the false positive rate (or probability of a false positive) or b/(b + d) =
1 − Specifi city.

These concepts are summarised in Table 4.2. In such tables it is important 
for consistency always to put true diagnosis on the top, and test result down 
the side. Since sensitivity = 1 − Probability(false negative) and specifi city =
1 − Probability(false positive), a possibly useful mnemonic to recall this is 
that ‘sensitivity’ and ‘negative’ have ‘n’s in them and ‘specifi city’ and 
‘positive’ have ‘p’s in them.

4.3 Bayes’ Theorem
Predictive value of a test

Suppose a clinician is confronted by a patient over 45 years with symptoms 
suggestive of heart failure, and that the results of the study described in Table 
4.1 are to hand. The doctor therefore believes that the patient has coronary 
artery disease with probability 0.25. Expressed in gambling terms of betting, 
one would be willing to bet with odds of about 0.25 to 0.75 or 1 to 3 that the 
patient does have heart failure. The patient then has the assay of NT-proBNP 
and the result is positive. How does this modify the odds?

It is fi rst necessary to calculate the probability of the patient having the 
disease, given a positive test result. From Table 4.1, there are 103 subjects 
with a positive test, of whom 35 have heart failure. Thus, the estimate of 0.251 

Table 4.2 Summary of defi nitions of sensitivity and specifi city 

Test result True diagnosis

 Disease present Disease absent

Positive Sensitivity Probability of a false positive
Negative Probability of a false negative Specifi city
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for the patient is adjusted upwards to the probability of disease with a posi-
tive test result which equals 35/(35 + 7) = 35/42 = 0.833.

This gives the predictive value of a positive test or p(D+|T+). The predictive
value of a negative test is p(D−|T−).

From Table 4.1 the predictive value of a positive NT-proBNP assay is 
35/42 = 0.833 and the predictive value of a negative assay is 300/368 = 0.815. 
These values are affected by the prevalence of the disease. For example, if 
those with the disease doubled in Table 4.1, then the predictive value of a 
positive assay would then become 70/(70 + 7) = 0.909 and the predictive value 
of a negative assay 300/(300 + 136) = 0.688.

How does the predictive value p(D+|T+) relate to sensitivity p(T+|D+)?
Clearly the former is what the clinician requires and the latter is what is 
supplied with the test. To determine this we need some more details con-
cerned with probability.

Multiplication rule and Bayes’ Theorem

For any two events A and B, the joint probability of A and B, that is the 
probability of both A and B occurring simultaneously, is equal to the product 
of the probability of A given B times the probability of B, thus:

p A B p A B p Band .( ) = ( ) × ( )

This is known as the multiplication rule of probabilities.
Suppose event A occurs when the NT-proBNP assay is positive and event 

B occurs when heart failure is truly present. The probability of having both 
a positive assay and heart failure is thus p(T+ and D+). From Table 4.1, the 
probability of picking out one subject with both a positive assay and heart 
failure from the combined group of 410 subjects is 35/410 = 0.085.

However, from the multiplication rule

p T D p T D p D+ +( ) = + +( ) × +( )and .

Now p(T+|D+) = 0.340 is the sensitivity of the test and p(D+) = 0.251 is the 
prevalence of heart failure and so p(T+ and D+) = 0.340 × 0.251 = 0.085, as 
before.

It does not matter if the labelling of disease and test had been reversed, 
that is adopting the convention that A occurs when heart failure is pre-
sent and B occurs when the assay is positive, and so it is clear that 
p(A and B) = p(B and A). From the multiplication rule it follows that

p A B p B p B A p A( ) ( ) = ( ) ( ).



 

This leads to what is known as Bayes’ theorem or

p B A
p A B p B

p A
( ) = ( ) ( )

( )
.

This formula is not appropriate if p(A) = 0, that is if A is an event which 
cannot happen.

Bayes’ theorem enables the predictive value of a positive test to be related 
to the sensitivity of the test, and the predictive value of a negative test to be 
related to the specifi city of the test. Bayes’ theorem enables prior assessments 
about the chances of a diagnosis to be combined with the eventual test results 
to obtain an a posteriori assessment about the diagnosis. It refl ects the pro-
cedure of making a clinical judgement.

In terms of Bayes’ theorem, the diagnostic process is summarised by

p D T
p T D p D

p T
+ +( ) = + +( ) +( )

+( )
.

The probability p(D+) is the a priori probability and p(D+|T+) is the a
posteriori probability.

Bayes’ theorem is usefully summarised when we express it in terms of the 
odds of an event, rather than the probability. Formally, if the probability 
of an event is p, then the odds are defi ned as p/(1 − p). The probability 
that an individual has heart failure, before testing, from Table 4.1 is 0.251, 
and so the odds are 0.251/(1 − 0.251) = 0.335, often written as 1 : 0.335 or 
approximately 3 : 1.

Illustrative example: Bayes’ theorem NT – proBNP assay for 
heart failure

This example illustrates Bayes’ theorem in practice by calculating the 
positive predictive value for the data of Table 4.1. There, p(T+) = 42/410 
= 0.102, p(D+) = 0.251 and p(T+|D+) = 0.340 thus

p D T+ +( ) = ×

=

Sensitivity Prevalence
Probability of positive result
pp T D p D

p T
+ +( ) +( )

+( )
= × =0 340 0 251

0 102
0 837

. .
.

. .
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Likelihood ratio

The clear simplicity of diagnostic test data, particularly when presented as a 
2 × 2 table, (see Table 4.1), is confounded by the many ways of reporting the 
results (Table 4.2). The likelihood ratio (LR) is a simple measure combining 
sensitivity and specifi city defi ned as

LR
p T D
p T D

Sensitivity
Specificity

= + +( )
+ −( )

=
−1

It can be shown that Bayes’ theorem can be summarised by:

Odds of disease after test Odds of disease before test LR        = × .

Example: Positive predictive value

The prevalence of a disease is 1 in 1000, and there is a test that can 
detect it with a sensitivity of 100% and specifi city of 95%. What is 
the probability that a person has the disease, given a positive result 
on the test?

To calculate the probability of a positive result consider 1000 people in 
which one person has the disease. The test will certainly detect this one 
person. However, it will also give a positive result on 5% of the 999 people 
without the disease. Thus the total positives is 1 + (0.05 × 999) = 50.95 and 
the probability is 0.95/1000 = 0.05095. Thus,

p D T+ +( ) = × =1 0 001
0 05095

0 02
.

.
. .

Example: Likelihood ratio – NT-proBNP assay for heart failure

From Table 4.1, the prevalence of of heart failure in these subjects is =
103/410 = 0.251, so the pre-test odds of disease are 0.251/(1 − 0.251) = 0.34. 
The LR = 0.340/(1 − 0.977) = 14.8, and so the odds of the disease after the 
test are 14.8 × 0.341 = 5.1. This can be verifi ed from the post-test probabil-
ity of p(D+|T+) = 0.833 calculated earlier, so that the post-test odds are 
0.833/(1 − 0.833) = 5.0. This differs from the 5.1 only because of rounding 
errors in the calculation. So the pre-test odds of heart failure of 0.34 have 
changed to a post-test odds (of heart failure) of 5.0 following a positive 
test result.

The usefulness of a test will depend upon the prevalence of the disease 
in the population to which it has been applied.



 

Example: Predictive value and prevalence of the disease – NT-proBNP 
assay for heart failure

Table 4.3 gives details of the predictive values of a positive and a NT-
proBNP assay test assuming the sensitivity and specifi city are 0.340 and 
0.977 respectively, but the prevalence of heart failure varies from 0.05 to 
0.95. In this example, likelihood ratio, LR = 0.340/0.023 = 14.8.

In general a useful test is one which considerably modifi es the pre-test 
probability. From Table 4.3 one can see that if the disease is very rare or 
very common, with a prevalence of 0.05 or 0.95 then the probabilities of 
disease given a positive test are reasonably close to the prevalence and 
the probability of a negative test is close to (1 − Prevalence), and so the 
test is of questionable value.

Example from the literature

Shaw et al (2004) compared detection of aspiration (the entry of secretions 
or foreign material into the trachea and lungs) by bedside examination 
made by a bronchial auscultation team (Speech and Language Therapist, 
and Physiotherapist) compared with videofl uoroscopy, as the ‘gold 
standard’ in 105 patients with dysphagia (diffi culty swallowing). The 
results for the three most commonly diagnosed conditions are given in 
Table 4.4.

In Table 4.4 it can be seen that sensitivity and specifi city are to some 
extent complementary. The bedside examination made by a bronchial 
auscultation team is quite sensitive to the diagnosis of risk of aspiration, 
at the price of not being very specifi c. On the other hand, for the other 
two conditions, the bronchial auscultation team is not very sensitive, but 
is very unlikely to diagnose the conditions, if they are not present.

Table 4.3 Illustration of how predictive value changes with prevalence of the disease in 
question

Initial probability of Predictive value Predictive value Useful test?
disease (prevalence) of positive test of negative test 

0.05 0.44 0.97 No
0.50 0.94 0.60 Yes
0.70 0.97 0.39 Yes
0.95 1.00 0.07 No
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Independence and mutually exclusive events

Two events A and B are independent if the fact that B has happened does 
not infl uence whether A will occur, that is p(A|B) = p(A), or p(B|A) = p(B).
Thus from the multiplication rule two events are independent if p(A and B)
= p(A) × p(B).

In Table 4.1, if the results of the NT-proBNP assay were totally unrelated 
to whether or not a patient had coronary heart failure, that is, they are inde-
pendent, we might expect

p D T p T p D+ +( ) = +( ) × ( )and + .

Thus if we estimate p(D+ and T+) = 35/410 = 0.085, p(D+) = 103/410 =
0.251 and p(T+) = 42/410 = 0.102, then the difference

p D T p D p T+ +( ) − +( ) +( ) = − ×( ) =and 0 085 0 251 0 102 0 059. . . .

This provides an estimate of whether these events are independent. It 
would be exactly zero in such a case were the true probabilities known. 
In this case, where the probabilities are also estimated, the size of the 
difference would suggest they are close to independence. The question of 
deciding whether events are or are not independent is clearly an important 
one and belongs to statistical inference. It is discussed in more detail in 
Chapter 7.

In general, a clinician is not faced with a simple question: ‘Has the patient 
got heart failure?’, but often with a whole set of different diagnoses. Usually 
these diagnoses are considered to be mutually exclusive; that is if the patient 
has one disease, he or she does not have any other. Similarly when a coin is 
tossed the event can be either a ‘head’ or a ‘tail’ but cannot be both. If two 
events A and B are mutually exclusive then the addition rule of mutually 
exclusive events applies:

Table 4.4 Comparison of detection of aspiration by bedside examination made by a 
bronchial auscultation team (Speech and Language Therapist, and Physiotherapist) com-
pared with videofl uoroscopy

Diagnosis Sensitivity Specifi city Positive predictive value (%)

Risk of aspiration 0.87 0.37 80
Aspiration 0.45 0.88 69
Silent aspiration 0.14 0.92 22

From Shaw et al (2004). Bronchial auscultation: an effective adjunct to speech and language therapy 
bedside assessment when detecting dysphagia and aspiration? Dysphagia, 19, 211–218: © Dysphagia 
Research Society, reproduced by permission of Springer Science and Business Media.



 

p A B p A p Bor( ) = ( ) + ( ).
It also follows that if A and B are mutually exclusive, they cannot occur 
together, and so

p A Band( ) = 0.

It is easy to confuse independent events and mutually exclusive events, but 
one can see from the above that mutually exclusive events cannot be inde-
pendent as if you have one you cannot have the other(s).

4.4 Relative (receiver)–operating characteristic 
(ROC) curve
When a diagnostic test produces a continuous measurement, then a conve-
nient diagnostic cut-off must be selected to calculate the sensitivity and 
specifi city of the test.

Example from the literature: Sensitivity and specifi city – 
disease severity

Johnson et al (2004) looked at 106 patients about to undergo an operation 
for acute pancreatitis. Before the operation, they were assessed for risk 
using a score known as the APACHE (Acute Physiology And Chronic 
Health Evaluation) II score. APACHE-II was designed to measure the 
severity of disease for patients (aged 16 or more) admitted to intensive care 
units. The complications after the operation were classifi ed as either ‘mild’ 
or ‘severe’. The authors also wanted to compare this score with a newly 
devised one the APACHE_O which included a measure of obesity. The 
convention is that if the APACHE-II is above 8 the patient is at high risk of 
severe complications. Table 4.5 shows the results using this cut-off value.

From Table 4.5 we obtain the sensitivity to be 22/27 = 0.81, or 81%, and 
the specifi city to be 8/13 = 0.62, or 62%.

Table 4.5 Number of subjects above and below 8 of the 
APACHE-II score severity of complication

APACHE-II Complication after operation Total

 Severe Mild

<8 22 5 27
≥8  5 8 13
Total 27 13 40
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In the above example, we need not have chosen APACHE-II = 8 as the 
cut-off value. Other possible values range from APACHE-II = 0 to 27 with 
these data. For each possibility there is a corresponding sensitivity and 
specifi city.

We can display these calculations by graphing the sensitivity on the y-axis
(vertical) and the false positive rate (1 − Specifi city) on the x-axis (horizontal) 
for all possible cut-off values of the diagnostic test. The resulting curve is 
known as the relative (or receiver) operating characteristic (ROC) curve.

Example from the literature: ROC – disease severity

The ROC curves from the study of Johnson et al (2004) are shown in 
Figure 4.3 for the APACHE-II and APACHE_O data.

A perfect diagnostic test would be one with no false negative results (that 
is sensitivity of 1) or false positive results (specifi city of 1) and would be 
represented by a line that started at the origin and went up the y-axis to a 
sensitivity of 1, and then across to a specifi city of 0. A test that produces false 
positive results at the same rate as true positive results would produce a ROC 
curve on the diagonal line y = x. Any reasonable diagnostic test will display 
a ROC curve in the upper left triangle of Figure 4.3. When more than one 
laboratory test is available for the same clinical problem one can compare 
ROC curves, by plotting both on the same fi gure.

Figure 4.3 Receiver–operating characteristic curve for APACHE_O and APACHE-II 
data from 106 patients with acute pancreatitis. From Johnson et al (2004). Comparison of 
APACHE-II score and obesity score (APACHE-O) for the prediction of severe acute 
pancreatitis. Pancreatology, 4, 1–6: reproduced by permission of Karger AG, Basel



 

The selection of an optimal combination of sensitivity and specifi city for a 
particular test requires an analysis of the relative medical consequences and 
costs of false positive and false negative interpretations. Thus, the reason for 
not giving angiographs to all patients with suspected heart disease is that it 
is a diffi cult and expensive procedure, and carries a non-negligible risk to the 
patient. An alternative test such as the exercise test might be tried, and only 
if it is positive would angiography then be carried out. If the exercise test is 
negative then the next stage would be to carry out biochemical tests, and if 
these turned out positive, once again angiography could be performed.

Analysis of ROC curves

As already indicated, a perfect diagnostic test would be represented by a line 
that started at the origin, travelled up the y-axis to 1, then across the ceiling to 
an x-axis value of 1. The area under this ROC curve, termed the AUC, is then 
the total area of the panel; that is, 1 × 1 = 1. In the example of Figure 4.3, 
the two tests are not ‘perfect’ but one can see that the AUC for APACHE_O 
is 0.92 and is slightly bigger than for APACHE-II at 0.90. The AUC can 
be used as a measure of the performance of a diagnostic test against the ideal 
and may also be used to compare different tests.

An area of 0.90 means that a randomly selected individual from the dis-
eased group has a laboratory test value larger than that for the randomly 
chosen individual from the non-diseased group for 90% of the time. Because 
the area under the ROC plot condenses the information of the graph to a 
single number, it is desirable to consider the plot as well as the area.

Further details of diagnostic studies, including sample sizes required for 
comparing alternative diagnostic tests, are given in Machin and Campbell 
(2005, Chapter 10).

4.5 Points when reading the literature
1. To whom has the diagnostic test been applied? It is possible that charac-

teristics of the patients or stage and severity of the disease can infl uence 
the sensitivity of the test. For example, it is likely that a test for cancer 
will have greater sensitivity for advanced rather than early disease. Have 
the authors given enough information to enable us to be sure of the disease 
status?

2. How has the group of patients used in the analysis been selected, and in 
particular how has the decision to verify the test by the gold standard been 
made? A common error is to select patients in some manner for verifi ca-
tion of a previous diagnosis; this usually leads to positive tests being over-
represented in the verifi ed sample and the sensitivity being infl ated. It is 
also common for investigation to assume that unverifi ed cases are disease-
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free, which can lead to infl ated specifi city estimates. The best way to avoid 
such bias is to construct a prospective study in which all patients receive 
defi nite verifi cation of disease status.

3. How have the investigators coped with specimens they were not able to 
interpret? If the reason for failure to interpret is essentially random, and 
is unrelated to disease status, then the test characteristics can be estimated. 
If it is related to disease status then these results cannot be ignored when 
interpreting the results. In any case, the proportion of non-interpretable 
results should be reported in any diagnostic test effi cacy study, since it is 
an important consideration in the cost-effectiveness of the test.

4. Did the investigator who provided the diagnostic test result know other 
clinical results about the patients? Diagnostic tests are usually carried out 
during or, in conjunction with, the clinical examination. Where there is an 
element of subjectivity in a test, such as an ECG stress test, a remarkable 
improvement in sensitivity can be shown when the investigator is aware 
of other symptoms of the patient!

5. Was the reproducibility of the test result determined? This could be done 
by repeating the test with different operators, or at different times, or with 
different machines, depending on the circumstances.

6. Did the patients who had the test actually benefi t as a consequence of the 
test?

7. How good is the gold standard? An ideal gold standard either may not 
exist or be very expensive or invasive and therefore not carried out. In 
this case, the test used as the gold standard may be subject to error, which 
turn will make the estimates of sensitivity and specifi city problematical.

4.6 Exercises
Decide whether the answers to the following questions are true or false.

1. In a group of patients presenting to a hospital casualty department with 
abdominal pain, 30% of patients have acute appendicitis. Seventy per 
cent of patients with appendicitis have a temperature greater than 37.5°C, 
40% of patients without appendicitis have a temperature greater 
than 37.5°C.

(a)  The sensitivity of temperature greater than 37.5°C as a marker for 
appendicitis is 21/49.

(b)  The specifi city of temperature greater than 37.5°C as a marker for 
appendicitis is 42/70.

(c) The positive predictive value of temperature greater than 37.5°C as a 
marker for appendicitis is 21/30.

(d)  The predictive value of the test might be different in another 
population.



 

(e)  The specifi city of the test will depend upon the prevalence of appen-
dicitis in the population to which it is applied.

2. A new laboratory test is developed for the diagnosis of rectal cancer.

(a)  A sensitivity of 85% implies that 15% of patients with rectal cancer 
will give negative fi ndings when tested.

(b)  A specifi city of 95% implies that 5% of patients with a negative test 
will actually have rectal cancer.

(c) A positive predictive value of 75% implies that 25% of patients with 
a positive test will not have rectal cancer.

(d)  The sensitivity of the test will depend upon the prevalence of rectal 
cancer in the population to which it is applied.

(e)  The predictive value of the test will depend upon the prevalence of 
rectal cancer in the population to which it is applied.

3. Three tests (A, B and C) for the diagnosis of breast cancer in premeno-
pausal women were assessed against a ‘gold standard’ taken to be 100% 
accurate. Their sensitivities were A 90%, B 85%, C 80%. Their specifi ci-
ties were A 100%, B 90%, C 95%. All three tests carried the same cost, 
and none was associated with any side-effects. It follows that:

(a) In these circumstances test A will always be preferable to test B.
(b) In these circumstances test B will always be preferable to test C.
(c) Test B detects a higher proportion of cases than test C.
(d) There are no false positive results with test A.
(e)  The predictive value of test B will depend on the prevalence of disease 

in the population to which it is applied.
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Summary

Three theoretical statistical distributions, the Binomial, Poisson and Normal 
are described. The properties of the Normal distribution and its importance 
are stressed and its use in calculating reference intervals is also discussed.

5.1 Introduction
In the previous chapter we defi ned the probability that an event will happen 
under given circumstances as the proportion of repetitions of those circum-
stances in which the event would occur in the long run. For example, if we toss 
a coin it comes down either heads or tails. If we carry on tossing our coin, we 
should get several heads and several tails. If we go on doing this for long 
enough, then we would expect to get as many heads as we do tails. So the 
probability of a head being thrown is a half, because in the long run a head 
should occur on half the throws. The number of heads which might arise in 
several tosses of the coin is called a random variable that is a variable which 
can take more than one value each with given probabilities attached to them.

If we toss a coin the two possibilities; Head (H) – scored 1, or Tail (T) – scored 
0, are mutually exclusive and these are the only events which can happen. If we 
let X be a random variable which is the number of heads shown on a single toss 
and is therefore either 1 or 0, then the probability distribution, for X is: Probabil-
ity (Head) = ½; Probability (Tail) = ½ and is shown graphically in Figure 5.1a.

What happens if we toss two coins at once? We now have four possible 
events: HH, HT, TH and TT. There are all equally likely and each has prob-
ability ¼. If we let Y be the number of heads then Y has three possible values 
0, 1 and 2. Y = 0 only when we get TT and has probability ¼. Similarly 
Y = 2 only when we get HH, so has probability ¼. However Y = 1 either when 
we get HT or TH and so has probability ¼ + ¼ = ½. The probability distribu-
tion for Y is shown in Figure 5.1b.

In general, we can think of the tosses of the coin as trials, each of which 
can have an outcome of success (head) or failure (tail). These distributions 
are all examples of what is known as the Binomial distribution. In this chapter 
we will discuss three distributions that are the backbone of medical statistics: 
the Binomial, the Poisson and the Normal. Each distribution has a formula, 
known as the probability distribution function. This gives the probability of 
observing an event, and the formulas are given in Section 5.7. The formulae 
contain certain constants, known as parameters, which identify the particular 
distribution, and from which various characteristics of the distribution, such 
as its mean and standard deviation, can be calculated.

5.2 The Binomial distribution
If a group of patients is given a new treatment such as acupuncture, for the 
relief of a particular condition, such as tension type headache, then the 



 

proportion p being successfully treated can be regarded as estimating the 
population treatment success rate p. (Here, p denotes a population value and 
has no connection at all with the mathematical constant 3.14159.) The sample 
proportion p is analogous to the sample mean x, in that if we score zero for 
those s patients who fail on treatment, and unity for those r who succeed, 
then p = r/n, where n = r + s is the total number of patients treated. The 
Binomial distribution is characterised by the mathematical variables n
(the number of individuals in the sample, or repetitions of the trial) and 
p (the true probability of success for each individual, or in each trial). The 
formula is given as Equation 5.1 in Section 5.8.

For a fi xed sample size n the shape of the binomial distribution depends 
only on p. Suppose n = 5 patients are to be treated, and it is known that on 
average 0.25 will respond to this particular treatment. The number of responses 
actually observed can only take integer values between 0 (no responses) and 
5 (all respond). The binomial distribution for this case is illustrated in Figure 
5.2. The distribution is not symmetric, it has a maximum at one response and 
the height of the blocks corresponds to the probability of obtaining the par-
ticular number of responses from the fi ve patients yet to be treated.

Figure 5.2 illustrates the shape of the Binomial distribution for various n and 
p = 0.25. When n is small (here 5 and 10), the distribution is skewed to the right. 
The distribution becomes more symmetrical as the sample size increases (here 
20 and 50). We also note that the width of the bars decreases as n increases since 
the total probability of unity is divided amongst more and more possibilities.

If p were set equal to 0.5, then all the distributions corresponding to those 
of Figure 5.2 would be symmetrical whatever the size of n. On the other hand, 
if p = 0.75 then the distributions would be skewed to the left.

We can use the properties of the Binomial distribution when making infer-
ences about proportions, as we shall see in subsequent chapters.

(a) Probability distribution for the number 

of heads (X) shown in one toss of a coin 

(b) Probability distribution for the number 

of heads (Y) shown in two tosses of a coin

Let X be a random variable 
which is the number of 
heads shown on a single 

toss:

– Prob (X= 0) =0.5;

– Prob (X= 1) =0.5.
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• Let Y be a random 
variable which is the 
number of heads 
shown in two tosses:

– Prob (Y=0) = 0.25;

– Prob (Y=1) = 0.50;

– Prob (Y=2) = 0.25.
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Figure 5.1 Examples of probability distributions
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Figure 5.2 Binomial distribution for p = 0.25 and various values of n. The horizontal 
scale in each diagram shows the value of r the number of successes

Example from the literature: Acupuncture and headache

Melchart et al (2005) give the successful response rate to acupuncture 
treatment in 124 patients with tension type headache as 46%. From their 
data we have p = 58/124 = 0.46.

Suppose a doctor treated four acupuncture patients. What is the prob-
ability that at most one responds?

This implies that either 0 or 1 respond. We can use Equation 5.1, with r =
0 to give 0.544 = 0.0850 and with r = 1 to give 4 × (1 − 0.54) × 0.543 = 0.2897. 
Summing these two probabilities gives p = 0.0850 + 0.2897 = 0.3747.

5.3 The Poisson distribution
The Poisson distribution is used to describe discrete quantitative data such 
as counts that occur independently and randomly in time or space at some 
average rate. For example the number of deaths in a town from a particular 
disease per day, or the number of admissions to a particular hospital typically 
follows a Poisson distribution.

The Poisson random variable is the count of the number of events that 
occur independently and randomly in time or space at some rate, l. The 
formula for a Poisson distribution is given as equation 5.2 in section 5.7.

We can use our knowledge of the Poisson distribution to calculate the 
anticipated number of hospital admissions on any particular day or the 



 

number of deaths from lung cancer in a year in a town. We can use this 
information to compare observed and expected values, to decide if, for 
example, the number of deaths from cancer in an area is unusually high.

Figure 5.3 shows the Poisson distribution for four different means l = 1, 4, 
10 and 15. For l = 1 the distribution is very right skewed, for l = 4 the skew-
ness is much less and as the mean increases to l = 10 or 15 it is more sym-
metrical, and looks more like the Binomial distribution in Figure 5.2.

Example from the literature: Cadaveric heart-beating donors

Wight et al (2004) looked at the variation in cadaveric heart-beating organ 
donor rates in the UK. Heart-beating donors are patients who were seri-
ously ill in an intensive care unit (ICU) and are placed on a ventilator. 
They found that they were 1330 organ donors, aged 15–69, across the UK 
for the two years 1999 and 2000 combined. Assuming the population of 
the UK is 60 million, the expected rate of donors is 0.011 donors per 1000 
population. Suppose a health region served a population of 100 000. What 
is the probability of getting no donors in a year?

With these historical data we would anticipate an average of l = 0.011 ×
100 000/1 000 = 1.1 donors per year. Using this value in equation 5.2, for r
= 0, Prob(0) = exp(−l), we obtain Prob(0) = e−1.1 = 0.3329. Thus there is a 
very high chance, about 1 in 3, of not getting any donors in any one year.
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Figure 5.3 Poisson distribution for various values of l. The horizontal scale in each 
diagram shows the value of r
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5.4 Probability for continuous outcomes
So far we have looked at what is the probability of a particular value, for 
example, a success or failure on treatment, for discrete data. As the number 
of possible values increases the probability of a particular value decreases. 
For continuous variables, such as birth weight and blood pressure, the set of 
possible values is infi nite (only limited by the precision of how we take the 
measurements). So we are more interested in the probability of the having 
values between certain limits rather than one particular value. For example, 
what is the probability of having a systolic blood pressure of 140 mmHg or 
higher?

The vertical scale of histograms, such as Figure 3.2, shown so far, have 
been frequencies and depend on the total number of observations. As an 
alternative we can use the relative frequency (or %) on the vertical scale. 
The advantage of using the relative frequency is that the scale of different 
histograms, with the same outcome but different sample sizes, will be the 
same. Such a histogram, as in Figure 5.4 can be given the rather formal name 
of an empirical relative frequency distribution but it is simply the observed 
distribution of the data in a sample.

If we imagine for the birthweight data in Figure 5.4 that we have a very 
large sample (many more than 98 babies) and by taking smaller and smaller 
intervals to classify the birth weights (much smaller than 0.2 kg) then the 
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Figure 5.4 Empirical relative frequency distributions of birth weight of 98 babies 
admitted to special care baby unit and the associated probability distribution (data from 
Simpson, 2004). Reproduced by permission of AG Simpson



 

histogram will start to look like a smooth curve. In these circumstances the 
distribution of observations may be approximated by a smooth underlying 
curve which is also shown in Figure 5.4. This curve is called a probability
distribution and is the theoretical equivalent of an empirical relative fre-
quency distribution. Probability distributions are used to calculate the prob-
ability that different values will occur; for example, what is the probability 
of having a birthweight of 2.0 kg or less? It is often the case with medical data 
that the histogram of a continuous variable obtained from a single measure-
ment on different subjects will have a symmetric ‘bell-shaped’ distribution.

5.5 The Normal distribution
This symmetric ‘bell-shaped’ distribution mentioned above is known as the 
Normal distribution and is one of the most important distributions in statis-
tics. One such example is the histogram of the birthweight (in kilograms) of 
the 3226 newborn babies shown in Figure 5.5.

Figure 5.5 Distribution of birthweight in 3226 newborn babies (data from O’Cathain 
et al, 2002)
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To distinguish the use of the same word in normal range (which we discuss 
later) and Normal distribution we have used a lower and upper case conven-
tion throughout this book.

The histogram of the sample data is an estimate of the population distribution 
of birth weights in newborn babies. This population distribution can be esti-
mated by the superimposed smooth ‘bell-shaped’ curve or ‘Normal’ distribution 
shown. We presume that if we were able to look at the entire population of 
newborn babies then the distribution of birthweight would have exactly the 
Normal shape. The Normal distribution has properties as shown in Figure 5.6.

The Normal distribution (Figure 5.6) is completely described by two 
parameters: one, m, represents the population mean or centre of the distribu-
tion and the other, s, the population standard deviation. The formula for the 
Normal distribution is given as Equation 5.3 (Section 5.8). Populations with 
small values of the standard deviation s have a distribution concentrated 
close to the centre, m; those with large standard deviation have a distribution 
widely spread along the measurement axis (Figure 5.7).

There are infi nitely many Normal distributions depending on the values of 
m and s. The Standard Normal distribution has a mean of zero and a variance 
(and standard deviation) of one and a shape as shown in Figure 5.8. 
The formula is given as Equation 5.4 in Section 5.8. If the random variable 
X has a Normal distribution with mean, μ and standard deviation, σ, then 

the standardised Normal deviate z
X= − μ

σ
 is a random variable that has a 

standard Normal distribution.

Total area under the curve = 1 (or 

100%).

Bell shaped and symmetrical 

about its mean. 

The peak of the curve lies above 

the mean. 

Any position along the horizontal 

axis can be expressed as a number 

of SDs away from the mean. 

The mean and median coincide. 

Area =1 

Figure 5.6 The Normal probability distribution



 
(a) effect of changing mean (μ2 > μ1) (b) effect of changing SD (s s2 > 1)
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Figure 5.7 Probability distribution functions of the Normal distributions with different 
means and standard deviations
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Figure 5.8 Areas (percentages of total probability) under the standard Normal curve

The areas under the standard Normal distribution curve have been tabu-
lated (Table 5.1 and Table T1, p. 316). Table 5.1, shows that for a value of z,
that is the number of standard deviations away from the mean of zero, the 
area to the left or the right of this value or the combined value. Using Figure 
5.8 or Table 5.1, we can note that most of the area, i.e. 68% of the probability 
is between −1 and +1 SD, the large majority (95%) between −2 and +2 SD, 
and almost all (99%) between −3 and +3.

As can be seen from Table 5.1 using, z values of 1.96, that is, 1.96 SD away 
from the mean) then exactly 95% of the Normal distribution lies between

μ σ μ σ− × + ×1 96 1 96. . .and
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Changing the multiplier 1.960 to 2.576, exactly 99% of the Normal distribu-
tion lies in the corresponding interval.

In practice the two parameters of the Normal distribution, μ and σ, must 
be estimated from the sample data. For this purpose a random sample from 
the population is fi rst taken.

How do we use the Normal distribution?

The Normal probability distribution can be used to calculate the probability 
of different values occurring. We could be interested in: what is the probabil-
ity of being within 1 standard deviation of the mean (or outside it)? We can 
use a Normal distribution table which tells us the probability of being outside 
this value.

Illustrative example: Normal distribution – birthweights

Using the birthweight data from the O’Cathain et al (2002) study let us 
assume that the birthweight for new born babies has a Normal distribution 
with a mean of 3.4 kg and a standard deviation of 0.6 kg. So what is the prob-
ability of giving birth to a baby with a birthweight of 4.5 kg or higher?

Since birthweight is assumed to follow a Normal distribution, with mean of 
3.4 kg and SD of 0.6 kg, we therefore know that approximately 68% of birth-
weights will lie between 2.8 and 4.0 kg and about 95% of birthweights will lie 
between 2.2 and 4.6 kg. Using Figure 5.9 we can see that a birthweight of 4.5 kg 
is between 1 and 2 standard deviations away from the mean.

First calculate, z, the number of standard deviations 4.5 kg is away from 

the mean of 3.4 kg, that is, z = − =4 5 3 4
0 6

1 83
. .

.
. . Then look for z = 1.83 in 

Table T1 of the Normal distribution table which gives the probability of 
being outside the values of the mean −1.83 SD to mean +1.83 SD as 0.0672. 
Therefore the probability of having a birthweight of 4.5 kg or higher is 
0.0672/2 = 0.0336 or 3.3%.

Table 5.1 Selected probabilities associated with the Normal distribution

Standardised deviate Probability of greater deviation

z = (x − m)/s In either direction In one direction

0 1.000  0.500
1 0.317  0.159
2 0.046  0.023
3 0.0027 0.0013
1.645 0.10   0.05
1.960 0.05   0.025
2.576 0.01   0.005



 

The Normal distribution also has other uses in statistics and is often used 
as an approximation to the Binomial and Poisson distributions. Figure 5.2 
shows that the Binomial distribution for any particular value of the parame-
ter p approaches the shape of a Normal distribution as the other parameter 
n increases. The approach to Normality is more rapid for values of p near 
0.5 than for values near to 0 or 1. Thus, provided n is large enough, a count 
may be regarded as approximately Normally distributed with mean np and 

SD = −( )[ ]nπ π1 .
The Poisson distribution with mean l approaches Normality as l increases 

(see Figure 5.3). When l is large a Poisson variable may be regarded as 
approximately Normally distributed with mean l and SD = λ.

5.6 Reference ranges
Diagnostic tests, as described in Chapter 4, use patient data to classify indi-
viduals as either normal or abnormal. A related statistical problem is the 
description of the variability in normal individuals, to provide a basis for 
assessing the test results of other individuals as we have seen in the previous 
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of 4.5kg 
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away from 

the mean

2.2 2.8 4.0 4.6

Figure 5.9 Normal distribution curve for birthweight with a mean of 3.4 kg and SD 
of 0.6 kg
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chapter. The most common form of presenting such data is as a range of 
values or interval which contains the values obtained from the majority of a 
sample of normal subjects. The reference interval is often referred to as a 
normal range or reference range.

Worked example: Reference range – birthweight

We can use the fact that our sample birthweight data, from the O’Cathain 
et al (2002) study (see Figure 5.5); appear Normally distributed to calcu-
late a reference range for birthweights. We have already mentioned that 
about 95% of the observations (from a Normal distribution) lie within 1.96 
SDs either side of the mean. So a reference range for our sample of babies, 
from the O’Cathain et al (2002) study is:

3 391 1 96 0 554 1 96 0 554
2 31

. . . . .
.

− ×( ) + ×( )to 3.391
or to 4.47kg.

A baby’s weight at birth is strongly associated with mortality risk during 
the fi rst year and, to a lesser degree, with developmental problems in 
childhood and the risk of various diseases in adulthood. If the data are not 
Normally distributed then we can base the normal reference range on the 
observed percentiles of the sample, that is, 95% of the observed data lie 
between the 2.5 and 97.5 percentiles. So a percentile-based reference 
range for our sample is: 2.19 kg to 4.43 kg.

Most reference ranges are based on samples larger than 3500 people. 
Over many years, and millions of births, the World Health Organization 
(WHO) has come up with a with a normal birthweight range for newborn 
babies. These ranges represent results than are acceptable in newborn 
babies and actually cover the middle 80% of the population distribution, 
that is, the 10th and 90th centiles. Low birthweight babies are usually 
defi ned (by the WHO) as weighing less than 2500 g (the 10th centile) 
regardless of gestational age, and large birth weight babies are defi ned as 
weighing above 4000 g (the 90th centile). Hence the normal birth weight 
range is around 2.5 kg to 4.0 kg. For our sample data, the 10 to 90th centile 
range was similar, at 2.75 to 4.03 kg.

Example from the literature: Reference or normal range – prolactin

Merza et al (2003) give the mean and standard deviation for prolactin 
concentration (prolactin is a hormone that is secreted by an endocrine 
gland) in 21 patients with chronic pain using opioid analgesia as 221 mIU/l 
and 91 mIU/l respectively. The prolactin concentration values in the sample 



 
5.7 Points when reading the literature
1. What is the population from which the sample was taken? Are there any 

possible sources of bias that may affect the estimates of the population 
parameters?

2. Have reference ranges been calculated on a random sample of healthy 
volunteers? If not, how does this affect your interpretation? Is there any 
good reason why a random sample was not taken?

3. For any continuous variable, are the variables correctly assumed to have a 
Normal distribution? If not, how do the investigators take account of this?

5.8 Technical details
Binomial distribution

Data that can take only a 0 or 1 response, such as treatment failure or treat-
ment success, follow the Binomial distribution provided the underlying popu-
lation response rate p does not change. The Binomial probabilities are 
calculated from

Prob responses out ofr n
n

r n r
r n r( ) =

−( )
−( ) −!

! !
π π1  5.1

for successive values of r from 0 through to n. In the above n! is read as 
n factorial and r! as r factorial. For r = 4, r! = 4 × 3 × 2 × 1 = 24. Both 0! 
and 1! are taken as equal to unity. It should be noted that the expected value 
for r, the number of successes yet to be observed if we treated n patients, 
is nπ. The potential variation about this expectation is expressed by the 

corresponding standard deviation SD r n( ) = −( )[ ]π π1 .

Poisson distribution

Suppose events happen randomly and independently in time at a constant 
rate. If the events happen with a rate of l events per unit time, the probability 
of r events happening in unit time is

ranged from a minimum of 103 mIU/l to a maximum of 369 mIU/l. If we 
assume the prolactin concentration has a Normal distribution in patients 
with chronic pain using opioid analgesia, then from this sample we would 
estimate a reference interval as 43 to 399 mIU/l. The paper states the 
normal reference range estimated from a large standard sample is actually 
66 to 588 mIU/l. Here, none of the 21 chronic pain patients had a prolactin 
concentration value outside this normal reference range.
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Prob eventsr
r

r

( ) = −( )exp
!
λ λ

 5.2

where exp(−l) is a convenient way of writing the exponential constant e 
raised to the power −l. (The constant e is the base of natural logarithms, 
which is 2.718281.  .  .  .)

The mean of the Poisson distribution for the number of events per unit 
time is simply the rate, l. The variance of the Poisson distribution is also 
equal to l, and so the SD = λ.

Normal distribution

The probability density, f(x), or the height of the curve above the x axis (see 
Figures 5.5 and 5.6) of a Normally distributed random variable x, is given by 
the expression

f x
x( ) = − −( )⎡

⎣
⎢

⎤

⎦
⎥

1

2 2

2

2σ π
μ

σ
exp ,  5.3

where m is the mean value of x and s is the standard deviation of x. Note that 
for the Normal distribution p, is the mathematical constant 3.14159  .  .  .  and 
not the parameter of a Binomial distribution.

The probability density simplifi es for the Standard Normal distribution, 
since m = 0 and s = 1, then the probability density, f(x), of a Normally dis-
tributed random variable x, is

f x
x( ) = −⎡

⎣⎢
⎤
⎦⎥

1

2 2

2

π
exp .  5.4

5.9 Exercises
1. A GP estimates that about 50% of her patients have ‘trivial’ problems. 

What is the probability that four out of fi ve patients in one evening’s 
surgery have trivial problems?

2. Suppose a hospital Accident and Emergency department has an average 
of 10 new emergency cases per hour. Calculate the probability of observ-
ing exactly 10 new emergency cases in any given hour.

3. The systolic blood pressure of 16 middle age men before exercise has a 
Normal distribution with a mean of 141.1 mmHg and a standard deviation 
of 13.62 mmHg. What is the probability having a systolic blood pressure 
of 160 mmHg or higher?



 

4. The diastolic blood pressures (DBP) of a group of young men are 
Normally distributed with mean 70 mmHg and a standard deviation of 
10 mmHg.

Decide whether the following statements are true or false.

(i) About 95% of the men have a DBP between 60 and 80 mmHg.
(ii) About 50% of the men have a DBP of above 70 mmHg.

(iii) About 2.5% of the men have DBP below 50 mmHg.

5. Given the sample described in question 4.

(i)  What is the probability of a young man having a DBP of 95 mmHg 
or above?

(ii)  What is the probability of a young man having a DBP of 55 mmHg 
or less?

(iii) What proportion of young men have a DBP between 55 mmHg and 
95 mmHg?

6. A GP and partners have 6000 patients and refer 27 patients to neurology 
in one year. In the health authority region, there are 1400 neurology 
referrals from a population of 500 000. Is this GP’s referral rate unusually 
high?
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Summary

In this chapter the concepts of a population and a population parameter are 
described. The sample from a population is used to provide the estimates of 
the population parameters. The standard error is introduced and methods 
for calculating confi dence intervals for population means for continuous data 
having a Normal distribution and for discrete data which follow Binomial or 
Poisson distributions are given.

6.1 Populations
In the statistical sense a population is a theoretical concept used to describe 
an entire group of individuals in whom we are interested. Examples are the 
population of all patients with diabetes mellitus, or the population of all 
middle-aged men. Parameters are quantities used to describe characteristics 
of such populations. Thus the proportion of diabetic patients with nephropa-
thy, or the mean blood pressure of middle-aged men, are characteristics 
describing the two populations. Generally, it is costly and labour intensive 
to study the entire population. Therefore we collect data on a sample of 
individuals from the population who we believe are representative of that 
population, that is, they have similar characteristics to the individuals in the 
population. We then use them to draw conclusions, technically make infer-
ences, about the population as a whole. The process is represented schemati-
cally in Figure 6.1. So, samples are taken from populations to provide estimates 

Population

Sample
Sample estimate 

of population 

parameter

Population parameter

Sampling mechanism: 

random sample or 

convenience sample

Confidence 

Interval

for population 

parameter

Figure 6.1 Population and sample



 
of population parameters. Some common population parameters and their 
corresponding sample statistics or estimates are described in Table 6.1.

It is important to note that although the study populations are unique, 
samples are not as we could take more than one sample from the target 
population if we wished. Thus for middle-aged men there is only one normal 
range for blood pressure. However, one investigator taking a random sample 
from a population of middle-aged men and measuring their blood pressure 
may obtain a different normal range from another investigator who takes a 
different random sample from the same population of such men. By studying 
only some of the population we have introduced a sampling error. In this 
chapter we show how to use the theoretical probability distributions, outlined 
in Chapter 5 to quantify this error.

6.2 Samples
In some circumstances the sample may consist of all the members of a specifi -
cally defi ned population. For practical reasons, this is only likely to be the 
case if the population of interest is not too large. If all members of the popu-
lation can be assessed, then the estimate of the parameter concerned is derived 
from information obtained on all members and so its value will be the popu-
lation parameter itself. In this idealised situation we know all about the 
population as we have examined all its members and the parameter is esti-
mated with no bias. The dotted arrow in Figure 6.1 connecting the population 
ellipse to population parameter box illustrates this. However, this situation 
will rarely be the case so, in practice, we take a sample which is often much 
smaller in size than the population under study.

Ideally we should aim for a random sample. A list of all individuals from 
the population is drawn up (the sampling frame), and individuals are selected 
randomly from this list, that is, every possible sample of a given size in the 
population has an equal chance of being chosen. Sometimes, there may be 
diffi culty in constructing this list or we may have to ‘make-do’ with those 
subjects who happen to be available or what is termed a convenience sample.
Essentially if we take a random sample then we obtain an unbiased estimate 
of the corresponding population parameter, whereas a convenience sample 

Table 6.1 Population parameters and sample statistics 

 Population Sample
 parameter statistic

Mean m x̄
Standard deviation s s
Proportion p p
Rate l r
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may provide a biased estimate but by how much we will not know. The dif-
ferent types of sampling are described more fully in Chapter 12.

6.3 The standard error
Standard error of the mean

So how good is the sample mean as an estimate of the true population mean? 
To answer this question we need to assess the uncertainty of our single 
sample mean. How can we do this? We shall use the birthweight data from 
the O’Cathain et al (2002) study. In Chapter 5 we showed that the birth-
weights of 3226 newborn babies are approximately Normally distributed with 
a mean of 3.39 kg and a standard deviation of 0.55 kg (Figure 5.5). Let us 
assume for expository purposes that this distribution of birthweights is the 
whole population. Obviously, the real population would be far larger than 
this and consist of the birthweights of millions of babies.

Suppose we take a random sample from this population and calculate the 
sample mean. This information then provides us with our estimate of the 
population mean. However, a different sample may give us a different esti-
mate of the population mean. So if we take (say) 100 samples all of the same 
size, n = 4, we would get a spread of sample means which we can display 
visually in a dot plot or histogram like that in the top panel of Figure 6.2. 
These sample means range from as low as 2.4 to as high as 4.0 kg, whereas if 
we had taken samples of size n = 16 the range is less from 3.1 to 3.7 kg. This 
is because the mean from the larger sample absorbs or dilutes the effect of 
very small or very large observations in the sample more than does a sample 
of a smaller size that contains such observations.

The variability of these sample means gives us an indication of the uncer-
tainty attached to the estimate of the population mean when taking only a 
single sample – very uncertain when the sample size is small to much less 
uncertainty when the sample size is large. Figure 6.2 clearly shows that the 
spread or variability of the sample means reduces as the sample size increases. 
In fact in turns out that sample means have the following properties.

Properties of the distribution of sample means

The mean of all the sample means will be the same as the population 
mean.

The standard deviation of all the sample means is known as the standard 
error (SE) of the mean or SEM.

Given a large enough sample size, the distribution of sample means, will 
be roughly Normal regardless of the distribution of the variable.



 

The standard error or variability of the sampling distribution of the mean is 
measured by the standard deviation of the estimates. If we know the population 
standard deviation, s, then the standard error of the mean is given by σ n . In 
reality, an investigator will only complete the study once (although it may be 
repeated for confi rmatory purposes) so this single study provides a single sample 
mean, x, and this is our best (and only) estimate of m. The same sample also pro-
vides s, the standard deviation of the observations, as an estimate of s. So with a 
single study, the investigator can then estimate the standard deviation of the dis-
tribution of the means by s n  without having to repeat the study at all.

Figure 6.2 Dot plots showing mean birthweight (kg) for 100 random samples of size 4, 
16, 25 and 100
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Worked example: Standard error of a mean – birthweight of 
preterm infants

Simpson (2004) reported the birthweights of 98 infants who were born 
prematurely, for which n = 98, x = 1.31 kg, s = 0.42 kg and SE(x) = 0.42/ 98
= 0.04 kg.

The standard error provides a measure of the precision of our sample 
estimate of the population mean birthweight.
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6.4 The Central Limit Theorem
It is important to note that the distribution of the sample means will be nearly 
Normally distributed, whatever the distribution of the measurement amongst 
the individuals, and will get closer to a Normal distribution as the sample size 
increases. Technically the fact that we can estimate the standard error from 
a single sample derives from what is known as the Central Limit Theorem
and this important property enables us to apply the techniques we describe 
to a wide variety of situations.

To illustrate this, we will use the random number table Table T2 (p. 318). 
In this table each digit (0 to 9) is equally likely to appear and cannot be pre-
dicted from any combination of other digits. The fi rst 15 digits (in sets of 5) 
read 94071, 63090, 23901. Assume that our population consists of all the 10 
digits (0 to 9) in a random numbers table. Figure 6.3 shows the population 
distribution of these random digits, which is clearly not Normal, (in fact it is 
called a uniform distribution). Each digit has a frequency of 10%. The popu-
lation mean value is 4.5.

Suppose we take a random sample of fi ve digits from this distribution and 
calculate their mean and repeat this 500 times. So for example, reading across 
the fi rst row of Table T4, the means would be 4.2, 3.6, 3.0, etc. Each of these 
is an estimate of the population value. How would these sample means (of 
size fi ve) be distributed? One can imagine that mean values close to 0 or 9 
are very unlikely, since one would need a run of fi ve 0s or fi ve 9s. However, 
values close to 4.5 are quite likely. Figure 6.4 shows the distribution of the 
means of these random numbers for different sized samples. The distribution 
for samples of size fi ve is reasonably symmetric but well spread out. As we 
take means of size 50, the distributions become more symmetric and 
Normally distributed.

Properties of standard errors

The standard error is a measure of the precision of a sample estimate. It 
provides a measure of how far from the true value in the population the 
sample estimate is likely to be. All standard errors have the following 
interpretation:

• A large standard error indicates that the estimate is imprecise.
• A small standard error indicates that the estimate is precise.
• The standard error is reduced, that is, we obtain a more precise esti-

mate, if the size of the sample is increased.



 

The important point is whatever the parent distribution of a variable, the 
distribution of the sample means will be nearly Normal, as long as the 
samples are large enough. Furthermore, as n gets larger the distribution of 
the sample means will become closer and closer to Normal. In practice the 
sample size restriction is not an issue when the parent distribution is uni-
modal and not particularly asymmetric (as in our example), as even for a 
sample size as small as ten, the distribution is close to Normal.

6.5 Standard errors for proportions and rates
Any estimate of a parameter obtained from data has a standard error and 
Table 6.3 (Section 6.10) gives formulae for means, proportions and rates. For 
example, we may be interested in the proportion of individuals in a popula-
tion who possess some characteristic, such as having a disease. Having taken 
a sample of size n from the population, suppose r individuals have a particular 
characteristic. Our best estimate, p, of the population proportion, p, is given 
by p = r/n. If we were to take repeated samples of size n from our population 
and plot the estimates of the proportion as a histogram, then, provided 
0.1 < p < 0.9 and n > 10 resulting sampling distribution of the proportion 

Figure 6.3 Distribution of a large number of random digits (0 to 9)
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would approximate a Normal distribution with mean value, p. The standard 
deviation of this distribution of estimated proportions is the standard error 
of the proportion or SE(p). Similarly, if we counted the number of events 
over a given time we would get a rate.

Worked example: Standard error of a proportion – 
acupuncture and headache

Melchart et al (2005) give the proportion who responded to acupunc-
ture treatment in 124 patients with tension type headache as p = 0.46. 
We assume the numbers who respond have a Binomial distribution 
and from Table 6.3 in Section 6.10 we fi nd the standard error is 

SE p( ) = −( ) =0 46 1 0 46
124

0 04
. .

. .

Figure 6.4 Observed distributions of the means of 500 random samples of size 5, 10, 20 
and 50 taken from the distribution of random digits 0 to 9



 
Standard deviation or standard error?

There is often confusion about the distinction between the standard error 
and standard deviation. The standard error always refers to an estimate of a 
parameter. As such the estimate gets more precise as the number of observa-
tions gets larger, which is refl ected by the standard error becoming smaller. 
If the term standard deviation is used in the same way, then it is synonymous 
with the standard error. However, if it refers to the observations then it is an 
estimate of the population standard deviation and does not get smaller as the 
sample size increases. The statistic, s, the calculation of which is described in 
Section 3.1, is an estimator of the population parameter s, that is, the popula-
tion standard deviation.

In summary, the standard deviation, s, is a measure of the variability between 
individuals with respect to the measurement under consideration, whereas the 
standard error (SE), is a measure of the uncertainty in the sample statistic, 
for example the mean, derived from the individual measurements.

6.6 Standard errors of differences
When two groups are to be compared, then it is the standard error of the 
difference between groups that is important. The formulas for the standard 
errors for the difference in means, proportions and rates are given in Table 6.4.

Worked example: Standard error of a rate – cadaveric heart donors

The study of Wight et al (2004) gave the number of organ donations cal-
culated over a two-year period as r = 1.82 per day. We assume the number 
of donations follows a Poisson distribution and from Table 6.3 in Section 
6.10 we fi nd the standard error is SE r( ) = ( ) =1 82 731 0 05. . .

Worked example: Difference in means – physiotherapy for 
patients with lung disease

Griffi ths et al (2000) report the results of a randomised controlled trial to 
compare a pulmonary rehabilitation programme (Intervention) with stan-
dard medical management (Control) for the treatment of chronic obstruc-
tive pulmonary disease. One outcome measure was the walking capacity 
(distance walked in metres from a standardised test) of the patient assessed 
6 weeks after randomisation. Further suppose such measurements can be 
assumed to follow a Normal distribution. The results from the 184 patients 
are expressed using the group means and standard deviations (SD) as 
follows:

 6.6 STANDARD ERRORS OF DIFFERENCES 87
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Table 6.2 Urinary incontinence rates at 12 months in women 
with persistent incontinence at three months postnatally 
(Glazener et al, 2001)

Urinary Intervention Control
Incontinence

n n

Yes 167 (60%) 169 (69%)
No 112 (40%)  76 (31%)
Total 279  245

From Glazener et al (2001). Conservative management of persistent 
postnatal urinary and faecal incontinence: randomised controlled 
trial. British Medical Journal, 323, 1–5: reproduced by permission of 
the BMJ Publishing Group.

n x SD x s
n x SD x

Int Int Int Int

Con Con Con

, ,
, ,

= = ( ) = =
= = (
93 211 118
91 123 )) = =sCon 99.

From these data d = xInt − xCon = 211 − 123 = 88 m and the correspond-

ing standard error from Table 6.4 is, SE d( ) = + =118
93

99
91

16 04
2 2

. m.

Worked example: Difference in proportions – post-natal 
urinary incontinence

The results of randomised controlled trial conducted by Glazener et al 
(2001) to assess the effect of nurse assessment with reinforcement of pelvic 
fl oor muscle training exercises and bladder training (Intervention) com-
pared with standard management (Control) among women with persistent 
incontinence three months postnatally are summarised in Table 6.2. 
The primary outcome measure was urinary incontinence at 12 months 
postnatally.

The corresponding proportions of patients who improved (no urinary 
incontinence) is pInt = 111/279 = 0.40 and pCon = 76/245 = 0.31. The differ-
ence in the proportion of patients who improved on treatment is pInt − pCon

= 0.40 − 0.31 = 0.09. Finally from Table 6.4 (Section 6.10) the standard 
error of this difference is:

SE p pInt Con−( ) = −( ) + −( ) =0 40 1 0 40
279

0 31 1 0 31
245

0 042
. . . .

. .



 

6.7 Confi dence intervals for an estimate
Confi dence interval for a mean

The sample mean, proportion or rate is the best estimate we have of the true 
population mean, proportion or rate. We know that the distribution of these 
parameter estimates from many samples of the same size will roughly be 
Normal. As a consequence, we can construct a confi dence interval – a range 
of values in which we are confi dent the true population value of the para-
meter will lie. A confi dence interval defi nes a range of values within which 
our population parameter is likely to lie. Such an interval for the population 
mean m is defi ned by

x SE x x SE x− × ( ) + × ( )1 96 1 96. .to

and, in this case, is termed a 95% confi dence interval as it includes the mul-
tiplier 1.96. Figure 6.5 illustrates that 95% of the distribution of sample means 

Population mean m

Figure 6.5 Sampling distribution for the population mean m
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lies within ±1.96 standard errors (the standard deviation of this distribution) 
of the population mean.

In strict terms the confi dence interval is a range of values that is likely to 
cover the true but unknown population mean value, m. The confi dence inter-
val is based on the concept of repetition of the study under consideration. 
Thus if the study were to be repeated 100 times, of the 100 resulting 95% 
confi dence intervals, we would expect 95 of these to include the population 
parameter. Consequently a reported confi dence interval from a particular 
study may or may not include the actual population parameter value of 
concern.

Figure 6.6 illustrates some of the possible 95% confi dence intervals that 
could be obtained from different random samples of 25 babies from the 3226 
babies whose birthweight data was recorded by O’Cathain et al (2002). 
Ninety-four (94%) of these 100 confi dence intervals contain the population 
mean birthweight of 3.39 kg but 6 (6%) do not. This is close to what we would 
expect – that the 95% confi dence interval will not include the true population 
mean 5% of the time.

Unfortunately the CIs ARE NOT pre-labelled with ‘I am a poor CI and do not include the population 

mean: do not choose me!’ 

Population mean
birthweight
m = 3.39 kg

Figure 6.6 One hundred different 95% confi dence intervals for mean birthweight con-
structed from random samples of size 25. The arrow indicates one of the 6CIs which does 
not include m = 3.39 kg



 

Strictly speaking, it is incorrect to say that there is a probability of 0.95 
that the population mean birthweight lies between 1.23 and 1.39 kg as 
the population mean is a fi xed number and not a random variable and 
therefore has no probability attached to it. However, most statisticians, 
including us, often describe confi dence intervals in that way. The value of 
0.95 is really the probability that the limits calculated from a random sample 
will include the population value. For 95% of the calculated confi dence 
intervals it will be true to say that the population mean, m, lies within this 
interval. The problem is, as Figure 6.6 shows, with a single study we just 
do not know which one of these 100 intervals we will obtain and hence 
we will not know if it includes m. So we usually interpret a confi dence 
interval as the range of values within which we are 95% confi dent that 
the true population mean lies.

Confi dence interval for a proportion

Since a proportion, p, is a mean of a series of 0’s and 1’s, we can use a similar 
expression for a confi dence interval for p as we did for m with corresponding 
changes to the estimated parameter and the associated standard error. The 
Central Limit theorem will assure Normality. The standard error is given in 
Table 6.3 (Section 6.10) and so the confi dence interval is just the Estimate ±
1.96 × SE once more.

Worked example: Confi dence interval for a mean – birthweights of 
pre-term infants

Simpson (2004) reported the mean birthweight of 98 infants who were 
born prematurely as x = 1.31 kg with SE(x) = 0.42/ 98 = 0.04 kg. From 
these the 95% CI for the population mean is

1 31 1 96 0 04 1 31 1 96 0 04. . . . . .− ×( ) + ×( )to

or 1.23 to 1.39 kg.
Hence, loosely speaking, we are 95% confi dent that the true population 

mean birthweight for pre-term infants lies between 1.23 and 1.39 kg. Our 
best estimate is provided by the sample mean of 1.31 kg.
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In an actual study, only one 95% CI is obtained, and we would never know 
without detailed further study, whether it includes within it the true popula-
tion mean’s value.
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For technical reasons, this expression given for a confi dence interval for p
is an approximation and is referred to as the traditional approach. It is also 
only in situations in which reasonable agreement exists between the shape 
of the Binomial distribution and the Normal distribution (see Chapter 5) that 
we would use the confi dence interval expression just given. The approxima-
tion will usually be quite good provided p is not too close to 0 or 1, situations 
in which either almost none or nearly all of the patients respond. The approx-
imation improves with increasing sample size n.

If n is small, however, or p close to 0 or 1, the disparity between the Normal 
and Binomial distributions with the same mean and standard deviation, 
similar to those illustrated in Figure 5.2, increases and the Normal distribu-
tion can no longer be used to approximate the Binomial distribution.

The preferred or recommended method for calculating a confi dence inter-
val for a single proportion described by Altman et al (2000) and given in 
Section 6.10, has better statistical properties than the traditional method just 
given.

Confi dence interval for a rate

Provided the sample size is reasonably large we can use the general formula, 
Estimate ± 1.96 × SE, for the confi dence interval of a rate.

Example from the literature: Confi dence interval for a proportion – 
acupuncture and headache

Melchart et al (2005) give the response rate to acupuncture treatment in 
124 patients as p = 0.46, SE(p) = 0.04 giving a 95% confi dence interval for 
p as 0.46 − 1.96 × 0.04 to 0.46 + 1.96 × 0.04 or 0.37 to 0.55, that is, from 
37% to 55%.

We are 95% confi dent that the true population proportion of patients 
with migraine who response successfully with acupuncture treatment lies 
between 37% and 55% and our best estimate is 46%.

Worked example: Confi dence interval for a rate – cadaveric 
heart donors

In the example from Wight et al (2004) the estimated heart donor rate 
was r = 1.82 with SE(r) = 0.05.

Therefore the 95% confi dence interval for the population rate l is 
1.82 − 1.96 × 0.05 to 1.82 + 1.96 × 0.05 or 1.72 to 1.92 organ donations per 
day. This confi dence interval is quite narrow suggesting that the true value 
of (strictly range for) l is well established.



 

6.8 Confi dence intervals for differences
To calculate a confi dence interval for a difference in means, for example 
d = mA − mB, the same structure for the confi dence interval of a single mean 
is used but with x replaced by x1 − x2 and SE(x) replaced by SE(x1 − x2).
Algebraic expressions for these standard errors are given in Table 6.4 (Section 
6.10). Thus the 95% CI is given by

x x SE x x x x SE x x1 2 1 2 1 2 1 21 96 1 96−( ) − × −( ) −( ) + × −( ). . .to

Example from the literature: CI for the difference between two 
means – physiotherapy for patients with lung disease

In the study by Griffi ths et al (2000) described earlier there was a differ-
ence in walking capacity between intervention and control of 88 m, with 
standard error 16 m.

Thus a 95% CI is

88 1 96 16 1 96 16− × + ×. .to 88 ,

which is 56.6 to 119.4 m.
It is therefore plausible that the intervention could improve walking 

capacity by as little as 57 m or by as much as 119 m.

Provided the sample sizes in the two groups are large, this method of cal-
culating a confi dence interval can be adapted for the comparison of two 
proportions or the comparison of two rates with appropriate changes.

Worked example: CI for difference between two proportions – 
post-natal urinary incontinence

In the study by Glazener et al (2001) described in Table 6.2 the difference 
in proportions was 0.09, with SE = 0.042. Thus the 95% CI for the true 
difference in proportions is given by 0.09 − (1.96 × 0.042) to 0.09 + (1.96 
× 0.042) or 0.008 to 0.172.

Therefore we are 95% confi dent that the true population estimate of 
the effect of this intervention lies somewhere between 0.008 (0.8%) and 
0.172 (17.2%), but our best estimate is 0.09 (9%). These data are therefore 
consistent with the Intervention improving continence over control by 
between 1% and 17%.
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6.9 Points when reading the literature
1. When authors give the background information to a study they often 

quote fi gures of the form a ± b. Although it is usual that a represents the 
value of the sample mean, it is not always clear what b is. When the intent 
is to describe the variability found in the sample then b should be the SD.
When the intent is to describe the precision of the mean then b should be 
the SE. This ± method of presentation tends to cause confusion and should 
be avoided.

2. A useful mnemonic to decide which measure of variability to use is: ‘If 
the purpose is Descriptive use Standard Deviation, if the purpose is Esti-
mation, use the Standard Error’.

3. What is the population from which the sample was taken? Are there any 
possible sources of bias that may affect the estimates of the population 
parameters?

4. Have reference ranges been calculated on a random sample of healthy 
volunteers? If not, how does this affect your interpretation? Is there any 
good reason why a random sample was not taken?

5. Have confi dence intervals been presented? Has the confi dence level been 
specifi ed (e.g. 95%)?

6. Has a Normal approximation been used to calculate confi dence intervals 
for a Binomial proportion or Poisson rate? If so, is this justifi ed?

6.10 Technical details
Standard errors

Table 6.3 Population parameters of the Normal, Binomial and Poisson distributions, 
their estimates and the associated standard errors (SE) for a single group

Distribution Parameters Population values Sample estimate Standard error (SE)

Normal Mean m x̄ s
n

Binomial Proportion p p p p
n

( )1−

Poisson Rate l r r
n



 

More accurate confi dence intervals for a proportion, p = r/n

To use this method we fi rst need to calculate three quantities:

A r z B z z r p C n z= + = + −( ) = +( )2 4 1 22 2 2; ; and,

where z is as before the appropriate value, z1−α/2, from the standard Normal 
distribution of Table T1. Then the recommended confi dence interval for the 
population proportion is given by:

A B
C

A B
C

−( ) +( )
to .

When there are no observed events, r = 0 and hence p = 0/n = 0 (0%), the 

recommended confi dence interval simplifi es to 0 to 
z

n z

2

2+( ) , while when 

r = n so that p = 1 (100%), the interval becomes 
n

n z+( )2  to 1.

Table 6.4 Population parameters of the Normal, binomial and Poisson distributions, 
their estimates and the associated standard errors (SE) for comparing two groups

Distribution Parameter Population Estimated SE (difference)
  value difference

Normal Mean m1 − m2 x̄1 − x̄2
s
n

s
n

1
2

1

2
2

2

+

Binomial Proportion p1 − p2 p1 − p2
p p

n
p p

n
1 1

1

2 2

2

1 1( ) ( )− + −

Poisson Rate l1 − l2 r1 − r2
r
n

r
n

1

1

2

2

+

Worked example: CI for a proportion – prolactin concentration

Of 15 patients with chronic pain using non-opioid analgesia, Merza et al 
(2003) found, one to have a prolactin hormone concentration outside the 
normal range. Here p = 1/15 = 0.07. To calculate the recommended 95% 
confi dence interval:

A

B

C

= × + =
= × + × ×( ) =
= × +

2 1 1 96 5 84

1 96 1 96 4 1 0 93 5 39

2 15 1 96

2

2

2

. . ;

. . . . ;

.(( ) = 37 68. .
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6.11 Exercises
Decide whether the following are true or false:

1. As the size of a random sample increases:

(a) The standard deviation decreases.
(b) The standard error of the mean decreases.
(c) The mean decreases.
(d) The range is likely to increase.
(e) The accuracy of the parameter estimates increases.

2. A 95% confi dence interval for a mean

(a) Is wider than a 99% confi dence interval.
(b)  In repeated samples will include the population mean 95% of the 

time.
(c) Will include the sample mean with a probability of 1.
(d) Is a useful way of describing the accuracy of a study.
(e) Will include 95% of the observations of a sample.

3. Assume that the mid-upper arm circumference in a population of rural 
Indian children aged 12 to 60 months follows a Normal distribution with 
unknown mean, m. Ten samples each of four children are drawn from this 
population by a formal process of random sampling with replacement. The 
results are shown in Table 6.5.

(a)  Calculate the sample mean and standard deviation for random sample 
number 10.

(b) Display the sample means on a dot plot.
(c) Calculate the standard error of the mean using the standard deviation, 

s, of random sample number 10 in Table 6.5.

Then the 95% confi dence interval for the prevalence of abnormal pro-
lactin hormone concentrations in the population of such chronic pain 
patients is

5 84 5 39
37 68

0 01
5 39

37 68
0 30

. .
.

.
.

.
.

−( ) = +( ) =to
5.84

,

that is, from 1% to 30%.
In the same study, there were 21 chronic pain patients using opioid anal-

gesia, none of whom had prolactin hormone concentrations outside the 
normal range. The estimated prevalence of abnormal prolactin hormone 
concentrations for this group is 0 (0%), with 95% confi dence interval from 

0 to 
1 96

21 1 96
0 15

2

2

.
.

.
+( ) = , that is 0 to 15%.



 

4. Table 6.6 shows ten random samples of size 16 drawn from the same 
population of Indian children.

(a)  Display as a dot plot alongside the previous one, the means of the ten 
random samples of size 16 shown in Table 6.6.

(b)  Calculate the standard error of the mean using the standard deviation 
of random sample number 4 in Table 6.6.

(c) Compare the standard error (of the mean) for n = 4 with the standard 
error (of the mean) for n = 16.

Table 6.6 Mid-upper arm circumference (mm) in a rural Indian population aged 12 to 60 
months: random samples of size 16

Sample Observations, x Sample Standard
mean deviation

 1 146 160 144 140 162 162 128 176 148 146 144 176 146 138 146 138 150.00 13.54
 2 142 158 156 190 164 148 138 130 142 152 150 148 146 154 142 148 150.50 13.36
 3 130 142 138 144 144 150 174 138 154 150 154 136 162 152 156 138 147.63 11.15
 4 146 160 158 140 128 150 172 154 140 162 162 136 150 152 156 154 151.25 11.19
 5 142 148 154 152 140 140 156 122 164 130 148 140 162 162 136 142 146.13 11.88
 6 148 142 134 158 130 156 144 154 148 138 168 140 146 154 146 152 147.38  9.63
 7 140 140 146 146 138 154 156 136 146 146 152 142 138 156 156 154 146.63  7.18
 8 156 140 152 158 164 148 140 128 132 156 148 162 164 142 156 134 148.75 11.61
 9 146 160 138 134 162 148 156 154 148 172 154 154 162 152 150 156 153.00  9.27
10 152 142 148 150 154 136 148 144 158 144 134 140 144 176 144 148 147.62  9.80
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Table 6.5 Mid-upper arm circumference (mm) in a rural Indian population aged 12 to 
60 months (10 random samples of size 4)

Sample Observations, X Sample mean, x̄ Standard
deviation, s

 1 128 162 158 156 151.00 15.53
 2 148 148 146 136 144.50  5.74
 3 164 150 148 158 155.00  7.39
 4 154 172 128 136 147.50 19.62
 5 144 158 154 168 156.00  9.93

 6 136 140 128 138 135.50  5.26
 7 144 158 140 142 146.00  8.16
 8 154 148 148 138 147.00  6.63
 9 154 140 154 152 150.00  6.73
10 156 154 140 158 



 

98 POPULATIONS, SAMPLES, STANDARD ERRORS AND CONFIDENCE INTERVALS

5. (a)  Estimate the 95% confi dence interval for one selected sample of size 
4 (sample number 10 in Table 6.5) and display this on the dot plot for 
n = 4.

(b)  Estimate the 95% confi dence interval for one selected sample of size 
16 (sample number 4 in Table 6.5) and display this on the dot plot for 
n = 16.

6. A surgeon in a large hospital is investigating acute appendicitis in people 
aged 65 and over. As a preliminary study he examines the hospital case 
notes over the previous 10 years and fi nds that of 120 patients in this age 
group with a diagnosis confi rmed at operation 73 were women and 47 were 
men. Calculate a 95% confi dence interval for the proportion of females 
with acute appendicitis.
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Summary

The main aim of statistical analysis is to use the information gained from a 
sample of individuals to make inferences about the population of interest. 
There are two basic approaches to statistical analysis: Estimation (with Con-
fi dence intervals) and Hypothesis Testing (with p-values). The concepts of 
the null hypothesis, statistical signifi cance, the use of statistical tests, p-values
and their relationship to confi dence intervals are introduced.

7.1 Introduction
We have seen that in sampling from a population which can be assumed to 
have a Normal distribution the sample mean can be regarded as estimating 
the corresponding population mean m. Similarly, s estimates the population 
standard deviation, s. We therefore describe the distribution of the popula-
tion with the information given by the sample statistics x and s. More gener-
ally, in comparing two populations, perhaps the population of subjects 
exposed to a particular hazard and the population of those who were not, 
two samples are taken, and their respective summary statistics calculated. We 
might wish to compare the two samples and ask: ‘Could they both come from 
the same population?’ That is, does the fact that some subjects have been 
exposed, and others not, infl uence the characteristic or variable we are 
observing? If it does not, then we regard the two populations as if they were 
one with respect to the particular variable under consideration.

7.2 The null hypothesis
Statistical analysis is concerned not only with summarising data but also with 
investigating relationships. An investigator conducting a study usually has a 
theory in mind; for example, patients with diabetes have raised blood pres-
sure, or oral contraceptives may cause breast cancer. This theory is known 
as the study or research hypothesis. However, it is impossible to prove most 
hypotheses; one can always think of circumstances which have not yet arisen 
under which a particular hypothesis may or may not hold. Thus one might 
hold a theory that all Chinese children have black hair. Unfortunately, having 
observed 1000 or even 1 000 000 Chinese children and checked that they all 
have black hair would not have proved the hypothesis. On the other hand, 
if only one fair-haired Chinese child is seen, the theory is disproved. Thus 
there is a simpler logical setting for disproving hypotheses than for proving 
them. The converse of the study hypothesis is the null hypothesis. Examples 
are: diabetic patients do not have raised blood pressure, or oral contracep-
tives do not cause breast cancer. Such a hypothesis is usually phrased in the 
negative and that is why it is termed null.



 

In Section 6.5 we described the results of a randomised trial conducted by 
Griffi ths et al (2000) of 184 patients with chronic obstructive pulmonary 
disease to compare a pulmonary rehabilitation programme (Intervention) 
with standard medical management (Control). One outcome measure was 
the walking capacity (distance walked in metres using a standardised test) of 
the patient assessed 6 weeks after randomisation. The sample means xInt =
211 m and xCon = 123 m estimate the two population mean distances walked 
mInt and mCon respectively. In the context of a clinical trial the population 
usually refers to those patients, present and future, who have the disease and 
for whom it would be appropriate to treat with either the Intervention or 
Control. Now if both approaches are equally effective, mInt equals mCon and 
the difference between xInt and xCon is only a chance difference. After all, 
subjects will differ between themselves, so we would not be surprised if dif-
ferences between xInt and xCon are observed, even if the approaches are 
identical in their effectiveness. The statistical problem is: when can it be 
concluded that the difference between xInt and xCon is of suffi cient magnitude 
to suspect that mInt is not equal to mCon?

The null hypothesis states that mInt = mCon and this can be alternatively 
expressed as mInt − mCon = 0. The problem is to decide if the observations, as 
expressed by the sample means and corresponding standard deviations, 
appear consistent with this hypothesis. Clearly, if xInt = xCont exactly, we 
would be reasonably convinced that mInt = mCont but what of the actual results 
given above? To help decide it is necessary to fi rst calculate d = xInt − xCon

= 211 − 123 = 88 m and also calculate the corresponding standard deviation 
of the difference, SD(d ) termed SE(d ). The formula for the standard error 
is given in Table 7.4 in Section 7.9.

The formula given here differs from that given in Table 6.4, which 
was used when calculating a confi dence interval for the true difference 
between means, d. The change arises as the standard error is now calculated 
under the assumption that the two groups have the same population 
standard deviation, s. This implies that both s1 and s2 are estimating 
the same quantity and so these are combined into the so-called pooled 
estimate, sPooled, of Table 7.4. However in this example there is very 
little difference numerically in the estimates and so SEPooled(d ) = 16.1 m 
also.

Now, if indeed the two populations of distances walked can be assumed 
each to have approximately Normal distributions, then d  will also have a 
Normal distribution. This distribution will have its own mean mInt–Con and 
standard deviation sInt–Con, which are estimated by d  and SEPooled(d ), respec-
tively. One can even go one step further, if samples are large enough, and 
state that the ratio d /SEPooled (d ) will have a Normal distribution with mean 
mInt–Con and a standard deviation of unity. If the null hypothesis were true, this 
distribution would have mean d = 0.
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However, the observed values are d = 88 m with SEPooled(d ) = 16.1 m and 
therefore a ratio of mean to standard error equal to z = 88/16.1 or more than 
fi ve standard deviations for this distribution from the null hypothesis mean 
of zero. This is a very extreme observation and very unlikely to arise by 
chance since 95% of observations sampled from a Normal distribution with 
specifi ed mean and standard deviation will be within 1.96 standard deviations 
of its centre. A value of d greater than zero seems very plausible. It therefore 
seems very unlikely that the measurements come from a Normal distribution 
whose mean is in fact d = mInt − mCon = 0. There is strong evidence that mInt and 
mCon differ perhaps by a substantial amount. As a consequence the notion of 
equality of effect of the two treatments suggested by the null hypothesis is 
rejected. The conclusion is that the Intervention results in further distances 
walked in patients with chronic obstructive pulmonary disease than Control 
management.

Provided the sample sizes in the two groups are large, the method of 
analysis used for comparing the mean distances walked in two groups can 
be utilised for the comparison of two proportions with minor changes. 
Thus the population proportions of success, pInt and pCon, replace the popula-
tion means mInt and mCon. Similarly the sample statistics pInt and pCon replace 
xInt and xCon. However, the standard error is now given by the expression 
of Table 7.4, which is calculated under the null hypothesis that the two 
proportions are the same, so that p1 and p2 both estimate a common 
value, p, and so these are combined into the so-called pooled estimate, pPooled

or more briefl y p.

Example from the literature: Post-natal urinary incontinence

One of the outcomes from the randomised trial conducted by Glazener 
et al (2001) to assess the effect of nurse assessment with reinforcement of 
pelvic fl oor muscle training exercises and bladder training (Intervention) 
compared with standard management (Control) among women with persist-
ent incontinence three months postnatally included urinary incontinence 
rates at 12 months postnatally and are summarised in Table 6.2. From these 

data, d = 0.40 − 0.31 = 0.09 and p = ×( ) + ×( )
+

=279 0 40 245 0 31
279 245

0 357
. .

. ,  or 

more simply the total number of mothers with no urinary incontinence, r =
188 divided by the total number of patients in the trial, N = 524. This leads to

SE dPooled ( ) = × −( )[ ] +⎛
⎝

⎞
⎠ =0 357 1 0 357

1
279

1
245

0 042. . . . (Compare this with

Chapter 6 with SE(d) = 0.042). Finally, z = d  / SEPooled (d) = 0.09/0.042 = 2.14.



 

7.3 The p-value
All the examples so far have used 95% when calculating a confi dence 
interval, but other percentages could have been chosen. In fact the choice 
of 95% is quite arbitrary although it has now become conventional in 
the medical literature. A general 100(1 − a)% confi dence interval can be 
calculated using

d z SE d d z SE d− × ( ) + × ( )α αto .

In this expression za is the value, along the axis of a Normal distribution 
(Table T1), which leaves a total probability of a equally divided in the two 
tails. In particular, if a = 0.05, then 100(1 − a)% = 95%, za = 1.96 and the 
95% confi dence interval is given as before by

d SE d d SE d− × ( ) + × ( )1 96 1 96. . .to

In the comparison of the 12-month post-natal urinary incontinence 
rates between the Intervention and Control groups in the Glazener et al 
(2001) study, the expression for the more general confi dence interval for 
d is

0 09 0 042 0 09 0 042. . . . .− ×( ) + ×( )z zα αto

Suppose that za is now chosen in this expression, in such a way that the 
left-hand or lower limit of the above confi dence interval equals zero. That is, 
it just includes the null hypothesis value of d = (pA − pB) = 0. Then the result-
ing equation is

0 09 0 042 0. . .− ×( ) =zα

This equation can be rewritten to become

zα = =0 09 0 042 2 14. . . ,

and this is termed the z-test. It is in fact the estimate of the difference 
between treatments divided by the standard error of that difference.

We can now examine Table T1 to fi nd an a such that za = 2.14. This deter-
mines a to be 0.0324 and 100(1 − a)% to be 97%. Thus a 97% confi dence 
interval for d is

0 09 2 14 0 042. . .− ×( ) ×( )to 0.09+ 2.14 0.042

or 0 to 0.18. This interval just includes the null hypothesis value of zero 
difference as we have required. The value of a so calculated is termed 
the p-value. The p-value can be interpreted as the probability of obtain-
ing the observed difference, or one more extreme, if the null hypothesis 
is true.
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Example: p-value – change in blood pressure

The systolic blood pressure in 16 middle-aged men before and after a 
standard exercise programme are shown in Table 7.1.

If the change in blood pressure, d, was calculated for each patient and 
if the null hypothesis is true that there is no effect of exercise on blood 
pressure, then the mean of the n = 16 d’s should be close to zero. The d’s
are termed the paired differences and are the basic observations of

interest. Thus d = Σd/n = 6.63 and SD d
d d

n
( ) =

−( )
−( )

=∑ 2

1
5 97. mmHg .

This gives SE d SD d n( ) = ( ) = 1 49. mmHg  and z = 6.63/1.49 = 4.44.
Using Table T1 with z = 4.44, a p-value <0.001 is obtained.

Table 7.1 Systolic blood pressure levels (mmHg) in 16 men 
before and after exercise (data from Altman et al, 2000) sorted 
by before exercise levels for convenience

Subject Before After Difference
 exercise exercise

16 116 126 10
15 126 132 6
 9 128 146 18
 7 132 144 12
 4 134 148 14
 3 136 134 −2
 5 138 144 6
13 138 146 8
 6 140 136 −4
 2 142 152 10
 8 144 150 6
 1 148 152 4
12 150 162 12
14 154 156 2
11 162 162 0
10 170 174 4
  Mean, d̄ 6.63
  SD 5.97
  SE (d̄ ) 1.49

A statistical signifi cance test considers the p-value obtained from the study. 
If it is small, conventionally less than 0.05, the null hypothesis is rejected as 
implausible. While if p > 0.05 this is often taken as suggesting that insuffi cient 
information is available to discount the null hypothesis.



 

7.4 Statistical inference
Hypothesis testing is a method of deciding whether the data are consistent 
with the null hypothesis. The calculation of the p-value is an important part 
of the procedure. Given a study with a single outcome measure and a statisti-
cal test, hypothesis testing can be summarised in four steps.

Hypothesis testing: main steps

• State your null hypothesis (H0) (Statement you are looking for evidence to 
disprove)

• State your alternative hypothesis (HA)
• Choose a signifi cance level, a, of the test
• Conduct the study, observe the outcome and compute the probability of 

observing your results, or results more extreme, if the null hypothesis is 
true (p-value)

• Use your p-value to make a decision about whether to reject, or not reject, 
your null hypothesis.

That is: If the p-value is less than or equal to a conclude that the data 
are not consistent with the null hypothesis. Whereas if the p-value is 
greater than a, do not reject the null hypothesis, and view it as ‘not 
yet disproven’.

Example: z-test – difference in fatigue severity scores

Stulemeijer et al (2005) report the mean and standard deviation of the 
fatigue severity score in a randomised controlled trial to compare immedi-
ate Cognitive Behaviour Therapy (CBT) with Waiting Listing for Therapy 
(WLT) in 69 adolescents with chronic fatigue patients. The 35 patients 
in the CBT group had a mean fatigue severity score of 30.2 (SD = 16.8) 
and 34 patients in the WLT control group had a mean score of 44.0 
(SD = 13.4).

An appropriate null hypothesis is that there is no difference in fatigue 
severity score at 5 months between the two groups. From the above 
summary, d = 30.2 − 44.0 = −13.8 and from Table 7.4, SE(d ) = 3.67.

A z-test gives z = 13.8/3.67 = 3.76 and use of Table T1 gives p = 0.0002. 
This is much smaller than 0.05 and so we would reject the null hypothesis 
of equal mean fatigue severity scores for the two ‘populations’ of adoles-
cent patients and so conclude that the two patient groups do have different 
mean of levels of fatigue.
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Step 1 State your null hypothesis (H0) and alternative hypothesis (HA)

It is easier to disprove things than to prove them. In a court of law the defen-
dant is assumed innocent until proven guilty. Often statistical analyses involve 
comparisons between different treatments, such as between standard and 
new – here we assume that the treatment effects are equal until proven dif-
ferent. Therefore the null hypothesis is often the negation of the research 
hypothesis which is that the new treatment will be more effective than the 
standard.

Step 2 Choose a signifi cance level, a, for your test

For consistency we have to specify at the planning stage a value, a, so that 
once the study is completed and analysed, a p-value below this would lead 
to the null hypothesis (which is specifi ed in step 1) being rejected. Thus if the 
p-value obtained from a trial is ≤a, then one rejects the null hypothesis and 
concludes that there is a statistically signifi cant difference between treat-
ments. On the other hand, if the p-value is >a then one does not reject the 
null hypothesis. Although the value of a is arbitrary, it is often taken as 0.05 
or 5%.

p-value

Small < a Large ≥ a

Your results are unlikely when the null Your results are likely when the null
 hypothesis is true  hypothesis is true

Step 3 Obtain the probability of observing your results, or results more 
extreme, if the null hypothesis is true (p-value)

First calculate a test statistic using your data (reduce your data down to a 
single value). The general formula for a test statistics is:

Test statistic
Observed value Hypothesised value
Standard error

= −
oof the observed value

This test statistic is then compared to a distribution that we expect if the 
null hypothesis is true (such as the Normal distribution with mean zero and 
standard deviation unity) to obtain a p-value.

Step 4 Use your p-value to make a decision about whether to reject, or 
not reject, your null hypothesis

We say that our results are statistically signifi cant if the p-value is less than 
the signifi cance level a, usually set at 5% or 0.05.



 

How to interpret p-values (adapted from Bland, 2000)

We can think of the p-values as indicating the strength of evidence but 
always keep in mind the size of the study being considered

p-value Interpretation

Greater than 0.10 Little or no evidence of a difference or a relationship*
Between 0.05 and 0.10 Evidence of a difference or relationship
Between 0.01 and 0.05 Weak evidence of a difference or a relationship
Less than 0.01: Strong evidence of a difference or relationship
Less than 0.001: Very strong evidence of a difference or relationship.

*Although we have talked in terms of detecting differences in this chapter, the same principles 
arise when testing relationships as in Chapter 9 for example.

In Chapter 4 we discussed different concepts of probability. The p-value
is a probability, and the concept in this instance is closest to the idea of a 
repeated sample. If we conducted a large number of similar studies and 
repeated the test each time, when the null hypothesis is true, then in the long 
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Result is p-value ≤ 0.05 p-value > 0.05

 Statistically signifi cant Not statistically signifi cant

Decide That there is suffi cient evidence That there is insuffi cient evidence
  to reject the null hypothesis  to reject the null hypothesis
  and accept the alternative
  We cannot say the null hypothesis
   is true, only that there is not
   enough evidence to reject it.

→

It is important to distinguish between the (preset) signifi cance level and 
the p-value obtained after the study is completed. If one rejects the null 
hypothesis when it is in fact true, then one makes what is known as a Type
I error. The signifi cance level a is the probability of making a Type I error. 
This is set before the test is carried out. The p-value is the result observed 
after the study is completed and is based on the observed result.

The term statistically signifi cant is spread throughout the published medical 
literature. It is a common mistake to state that it is the probability that the 
null hypothesis is true as the null hypothesis is either true or it is false. The 
null hypothesis is not, therefore, ‘true’ or ‘false’ with a certain probability. 
However, it is common practice to assign probabilities to events, such as ‘the 
chance of rain tomorrow is 30%’. So in some ways, the p-value can be thought 
of as a measure of the strength of the belief in the null hypothesis.
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run, the proportion of times the test statistic equals, or is greater than the 
observed value is the p-value.

In terms of the notation of Chapter 4 the p-value is equivalent to the prob-
ability of the data (D), given the hypothesis (H), that is, P(D|H) (strictly the 
probability of the observed data, or data more extreme). It is not P(H|D),
the probability of the hypothesis given the data, which is what most people 
want. Unfortunately, unlike diagnostic tests we cannot go from P(D|H) to 
P(H|D) using Bayes’ theorem, because we do not know the a priori probabil-
ity (that is before collecting any data) of the null hypothesis being true P(H),
which would be analogous to the prevalence of the disease. Some people try 
to quantify their subjective belief in the null hypothesis, but this is not objec-
tive as different investigators will have different levels of belief and so differ-
ent interpretations from the same data will arise.

Whenever a signifi cance test is used, the corresponding report should 
quote the exact p-value to a sensible number of signifi cant fi gures together 
with the value of the corresponding test statistic. Merely reporting whichever 
appropriate, p < 0.05 or worse, p > 0.05, or p = ‘NS’ meaning ‘Not statistically 
signifi cant’, is not acceptable.

Example: Interpreting a p-value – blood pressure before and 
after exercise

In the example of examining change in blood pressure before and after 
exercise in 16 men the p-value was less than 0.001.

What does p < 0.001 mean?

Your results are unlikely when the null hypothesis is true.

Is this result statistically signifi cant?

The result is statistically signifi cant because the p-value is less than the 
signifi cance level α set at 5% or 0.05.

You decide?

That there is suffi cient evidence to reject the null hypothesis and accept 
the alternative hypothesis that there is a difference (a rise) in the mean 
blood pressure of middle-aged men before and after exercise.

7.5 Statistical power
Type I error, test size and signifi cance level

We said that the fi rst step in hypothesis testing is to choose a value a, so 
that once the study is completed and analysed, a p-value below this would 
lead to the null hypothesis being rejected. Thus if the p-value obtained from 



 
a trial is ≤a, then one rejects the null hypothesis and concludes that there is 
a statistically signifi cant difference between treatments. On the other hand, 
if the p-value is >α then one does not reject the null hypothesis. This seems 
a clear-cut decision with no chance of making a wrong decision. However, as 
Table 7.2 shows there are two possible errors when using a p-value to make 
a decision.

Even when the null hypothesis is in fact true there is still a risk of rejecting 
it. To reject the null hypothesis when it is true is to make a type I error. 
Plainly the associated probability of rejecting the null hypothesis when it is 
true is equal to a. The quantity α is interchangeably termed the test size, 
signifi cance level or probability of a type I (or false-positive) error.

Type II error and power

The clinical trial could yield an observed difference d  that would lead to a 
p-value > a even though the null hypothesis is really not true, that is, mInt is 
indeed not equal to mCon. In such a situation, we then accept (more correctly 
phrased as ‘fail to reject’) the null hypothesis although it is truly false. This 
is called a Type II (false-negative) error and the probability of this is denoted 
by b.

The probability of a Type II error is based on the assumption that the null 
hypothesis is not true, that is, d = mInt − mCon ≠ 0. There are clearly many pos-
sible values of d in this instance and each would imply a different alternative 
hypothesis, HA, and a different value for the probability b.

The power is defi ned as one minus the probability of a Type II error, thus 
the power equals 1 − b. That is, the power is the probability of obtaining a 
‘statistically signifi cant’ p-value when the null hypothesis is truly false.

The relationship between Type I and II errors and signifi cance tests is given 
in Table 7.3.

These concepts of Type I error and Type II error parallel the concepts 
of sensitivity and specifi city that we discussed in Section 4.2. The Type I 
error is equivalent to the false positive rate (1 − specifi city) and the 
Type II error is equivalent to the false negative rate (1 − sensitivity).

Table 7.2 Possible errors arising when performing a hypothesis test

You decide to The null hypothesis is actually

 True False

Reject the null hypothesis Incorrect Correct
 (test is statistically signifi cant)
Not reject the null hypothesis Correct Incorrect
 (test is not statistically signifi cant)
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7.6 Confi dence intervals rather than p-values
All that we know from a hypothesis test is, for example, that there is a dif-
ference in the mean blood pressure of middle aged men before and after 
exercise. It does not tell us what the difference is or how large the difference 
is. To answer this we need to supplement the hypothesis test with a confi -
dence interval which will give us a range of values in which we are confi dent 
the true population mean difference will lie.

Simple statements in a study report such as ‘p < 0.05’ or ‘p = NS’ do not 
describe the results of a study well, and create an artifi cial dichotomy between 
signifi cant and non-signifi cant results. Statistical signifi cance does not neces-
sarily mean the result is clinically signifi cant. The p-value does not relate 
to the clinical importance of a fi nding, as it depends to a large extent on the 
size of the study. Thus a large study may fi nd small, unimportant, differences 
that are highly signifi cant and a small study may fail to fi nd important 
differences.

Table 7.3 Relationship between Type I and Type II errors and signifi cance tests

Test statistically signifi cant Difference exists Difference does not exist
 (HA true) (H0 true)

Yes Power (1 − b) Type I error (a)
No Type II error (b)

Example from the literature: Aspirin for non-fatal 
myocardial infarction

In a randomised trial of 1239 patients, Elwood and Sweetnam (1979) dis-
covered the mortality after a non-fatal myocardial infarction to be 8.0% 
in a group given aspirin and 10.7% in a group given placebo. The differ-
ence, 2.7%, has 95% confi dence interval −0.5% to 6.0%.

Based on this result, a reader might conclude that there was little evi-
dence for an effect of aspirin on mortality after myocardial infarction. 
However, shortly after this another study was published by the Persantine-
Aspirin Reinfarction Research Study Group (1980). This showed 9.2% 
mortality in the aspirin group, and 11.5% in the placebo, a difference of 
2.3%, which is less than that of Elwood and Sweetnam. However, the 
sample size was 6292 and the 95% CI 0.8% to 3.8%.

The larger study had greater power, and so achieved a narrower confi -
dence interval whose lower limit was further from the null hypothesis 
value of zero than in the fi rst study.



 

Supplementing the hypothesis test with a confi dence interval will in-
dicate the magnitude of the result and this will aid the investigators to 
decide whether the difference is of interest clinically (see Figure 7.1). 
The confi dence interval gives an estimate of the precision with which a 
statistic estimates a population value, which is useful information for the 
reader. This does not mean that one should not carry out statistical tests 
and quote p-values, rather that these results should supplement an estimate 
of an effect and a confi dence interval. Many medical journals now require 
papers to contain confi dence intervals where appropriate and not just 
p-values.
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Figure 7.1 Use of confi dence intervals to help distinguish statistical signifi cance from 
clinical importance
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Example: Clinical importance – blood pressure before and 
after exercise

The mean difference in systolic blood pressure following exercise was 
6.63 mmHg with a SD of 5.97 mmHg. The standard error (of the mean 
difference) is 5.97/ 16 = 1.49 mmHg and so the 95% CI is

6 63 1 96 1 49 1 96 1 49 3 71. . . . . .− ×( ) + ×( )to 6.63 or to 9.55mmHg.

Therefore we are 95% confi dent that the true population mean differ-
ence in systolic blood pressure lies somewhere between 3.7 and 9.6 mmHg, 
but the best estimate we have is 6.6 mmHg.

Suppose the difference is clinically important if a mean blood pre-
ssure change of 10 mmHg or more is observed, then the above result is 
not clinically important although it is statistically signifi cant. Hence 
this situation corresponds to the second confi dence interval down in 
Figure 7.1.

Relationship between confi dence intervals and statistical signifi cance

Different though hypothesis testing and confi dence intervals may appear 
there is in fact a close relationship between them. If the 95% CI does not 
include zero (or, more generally the value specifi ed in the null hypothesis) 
then a hypothesis test will return a statistically signifi cant result. If the 95% 
CI does include zero then the hypothesis test will return a non-signifi cant 
result. The confi dence interval shows the magnitude of the difference and 
the uncertainty or lack of precision in the estimate of interest. Thus the con-
fi dence interval conveys more useful information than p-values. For example, 
whether a clinician will use a new treatment that reduces blood pressure or 
not will depend on the amount of that reduction and how consistent the effect 
is across patients. So, the presentation of both the p-value and the confi dence 
interval is desirable – but if only one is to be presented the p-value would be 
omitted. Presenting a 95% CI indicates whether the result is statistically sig-
nifi cant at the 5% level.

7.7 One-sided and two-sided tests
The p-value is the probability of obtaining a result at least as extreme as the 
observed result when the null hypothesis is true, and such extreme results 
can occur by chance equally often in either direction. We allow for this by 
calculating a two-sided p-value. In the vast majority of cases this is the 



 

correct procedure. In rare cases it is reasonable to consider that a real dif-
ference can occur in only one direction, so that an observed difference in 
the opposite direction must be due to chance. Here, the alternative hypo-
thesis is restricted to an effect in one direction only, and it is reasonable to 
calculate a one-sided p-value by considering only one tail of the distribution 
of the test statistic. For a test statistic with a Normal distribution, the usual 
two-sided 5% cut-off point is 1.96, whereas the corresponding one-sided 5% 
cut-off value is 1.64.

One-sided tests are rarely appropriate. Even when we have strong prior 
expectations, for example that a new treatment cannot be worse than an old 
one, we cannot be sure that we are right. If we could be sure we would not 
need to conduct the study! If it is felt that a one-sided test really is appropri-
ate, then this decision must be made before the data are collected; it must 
not depend on the observed outcome data from the study itself. In practice, 
what is often done is that a two-sided p-value is quoted, but the result is given 
more weight, in an informal manner, if the result goes in the direction that 
was anticipated.

Key points

• Research questions need to be turned into a statement for which we can 
fi nd evidence to disprove – the null hypothesis.

• The study data is reduced down to a single probability – the probability of 
observing our result, or one more extreme, if the null hypothesis is true 
(p-value).

• We use this p-value to decide whether to reject or not reject the null 
hypothesis.

• But we need to remember that ‘statistical signifi cance’ does not necessarily 
mean ‘clinical signifi cance’.

• Confi dence intervals should always be quoted with a hypothesis test to give 
the magnitude and precision of the difference.

7.8 Points when reading the literature
1. Have clinical importance and statistical signifi cance been confused?
2. Is it reasonable to assume that the continuous variables have a Normal 

distribution?
3. Have confi dence intervals of the main results been quoted?
4. Is the result medically or biologically plausible and has the statistical sig-

nifi cance of the result been considered in isolation, or have other studies 
of the same effect been taken into account?
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7.9 Technical details

Table 7.4 Population parameters of the Normal and binomial distributions, their esti-
mates and the associated standard errors (SE) for comparing two groups under the null 
hypothesis of no difference between groups

Distribution Parameters SE (Difference)

Normal Mean
 difference s

n n
Pooled

1 1

1 2

+ s
n s n s

n n
Pooled = − + −

− + −
( ) ( )

( ) ( )
1 1

2
2 2

2

1 2

1 1
1 1d = m1 − m2

Binomial Difference
 in proportions p p

n n
( )1

1 1

1 2

− +⎛
⎝⎜

⎞
⎠⎟ p

n p n p
n n

= +
+

1 1 2 2

1 2d = p1 − p2

7.10 Exercises
1. Gaffney et al (1994) compared 141 babies who developed cerebral palsy 

to a control group of (control) babies made up from the babies who 
appeared immediately after each cerebral palsy case in the hospital deliv-
ery book. The corresponding hospital notes were reviewed by a researcher, 
who was blind to the baby’s outcome, with respect to medical staff response 
to signs of fetal stress. Failure to respond to signs of fetal distress by the 
medical staff was noted in 25.8% of the cerebral palsy babies and in 7.1% 
of the next delivery controls: a difference of 18.7%. This difference had 
standard error 4.2% and the 95% CI was 10.5 to 26.9%.

(a)  What is the statistical null hypothesis for this study? What is the alter-
native hypothesis?

(b) What is meant by ‘the difference was 18.7%’?
(c) What can we conclude from the 95% CI?

2. A randomised controlled trial was conducted to investigate the cost-
 effectiveness of community leg ulcer clinics (Morrell et al 1998). A total 
of 233 patients were randomly allocated to either intervention (120 
patients, treatment at a leg ulcer clinic) or control (113, usual care at home 
by district nursing service). At the end of 12 months the mean time (in 
weeks) that each patient was free from ulcers during follow up was 20.1 
and 14.2 in the clinic and control groups, respectively. On average, patients 
in the clinic group had 5.9 more ulcer-free weeks (95% CI 1.2 to 10.6 
weeks) than the control patients. Mean total costs were £878 per year for 
the clinic group and £863 for the control group (p = 0.89).



 

(a)  Is there a statistically signifi cant difference between the two groups 
with respect to the number of ulcer-free weeks?

(b) What is the standard error of the difference in mean ulcer free weeks?
(c) Is there a statistically signifi cant difference between the two groups 

with respect to the cost of treating the patients over the 12 month 
period? Would you expect the confi dence interval for this difference 
to include the value for ‘no difference’?

(d) What would you conclude from the information above?

3. A study by Taylor et al (2002) investigated whether the measles, mumps 
and rubella (MMR) vaccination was associated with bowel problems 
and developmental regression in children with autism. The authors 
reviewed the case notes for 278 children with core autism and 195 
with atypical autism from fi ve health districts in north-east London, 
England born between 1979 and 1998. This time frame was chosen as 
it included the date when the MMR vaccination was introduced in 
October 1988. The authors examined whether the proportions with develop-
mental regression and those with bowel problems changed during the 
20 years. The p-values associated with the change over time were 0.50 
and 0.47 respectively.

In addition the authors examined whether there was any association 
between bowel problems and developmental regression. Of the 118 chil-
dren with developmental regression, 26% reported bowel problems, whilst 
of the 351 without developmental regression 14% reported bowel symp-
toms. The difference was 12.3% (95% CI 4.2% to 21.5%).

(a)  Write suitable statistical null hypotheses for this study. What are the 
alternative hypotheses to these?

(b)  Was there a statistically signifi cant difference in the proportions with 
developmental regression during the 20-year study period?

(c) Was there a statistically signifi cant difference in the proportions with 
bowel problems during the 20-year study period?

(d)  What does the confi dence interval for the difference in with bowel 
problems for the children with and without developmental regression 
tell you? Would you expect the p-value for this difference to be 
greater than or less than 0.05?

4. A UK study by Peacock et al (1995) of factors affecting the outcome of 
pregnancy among 1513 women reported that the overall incidence of pre-
term births was 7.5%, SE 0.68% and 95% CI 6.1 to 8.8%.

(a) What is meant by SE = 0.68%?
(b) What is meant by 95% CI 6.1 to 8.8%?
(c) How would the confi dence interval change if 90% limits were used?
(d) How would the confi dence interval change if 99% limits were used?
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Another study conducted at about the same time in Denmark 
(Kristensen et al, 1995) and including 51 851 women, reported that the 
overall incidence of pre-term birth was 4.5% (95% CI 4.3 to 4.7%).

(e)  Explain why this 95% CI is narrower than that reported in the UK 
study. Do you think that there is a real difference in pre-term birth 
rates between the two populations being studied?
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Summary

In this chapter we will now be putting some of the theory into practice 
and looking at some of the more basic statistical tests that you will 
come across in the literature and in your own research. The choice of 
method of analysis for a problem depends on the comparison to be made 
and the data to be used. We explain some of the basic methods appro-
priate for comparing two groups. We consider the comparison of two 
independent groups such as groups of patients given different treatments 
and the comparison of paired data, for example, the response of one 
group under different conditions as in a cross-over trial, or of matched pairs 
of subjects.

8.1 Introduction
There are often several different approaches to even a simple problem. The 
methods described here and recommended for particular types of question 
may not be the only methods, and may not be universally agreed as the best 
method. However, these would usually be considered as valid and satisfac-
tory methods for the purposes for which they are suggested here.

What type of statistical test? Five key questions to ask

1. What are the aims and objectives of the study?
2. What is the hypothesis to be tested?
3. What type of data is the outcome data?
4. How is the outcome data distributed?
5. What is the summary measure for the outcome data?

Given the answers to these fi ve key questions, an appropriate approach to 
the statistical analysis of the data collected can be decided upon. The type of 
statistical analysis depends fundamentally on what the main purpose of the 
study is. In particular, what is the main question to be answered? The data 
type for the outcome variable will also govern how it is to be analysed, as an 
analysis appropriate to continuous data would be completely inappropriate 
for binary categorical data. In addition to what type of data the outcome 
variable is, its distribution is also important, as is the summary measure to 
be used. Highly skewed data require a different analysis compared to data 
that are Normally distributed.

The choice of method of analysis for a problem depends on the compari-
son to be made and the data to be used. This chapter outlines the methods 
appropriate for two common problems in statistical inference as outlined 
below.



 

Two common problems in statistical inference

1. Comparison of independent groups, for example, groups of patients given 
different treatments.

2. Comparison of the response for paired observations, for example, in a 
cross-over trial, or for matched pairs of subjects.

Before beginning any analysis it is important to examine the data, using 
the techniques described in Chapters 2 and 3; adequate description of the 
data should precede and complement the formal statistical analysis. For most 
studies and for randomised controlled trials in particular, it is good practice 
to produce a table that describes the initial or baseline characteristics of the 
sample.

Example dataset

We shall illustrate some of various statistical tests by using data from a ran-
domised controlled trial which aimed to compare a new treatment regime for 
patients with leg ulcers with usual care (Morrell et al 1998). In this trial, 233 
patients with venous leg ulcers were randomly allocated to the Intervention 
(120) or the Control (113) group. The intervention consisted of weekly treat-
ment with four layer bandaging in a leg ulcer clinic (Intervention group) or 
usual care at home by the district nursing service (Control group). Patients 
were treated and followed up for 12 months. The trial used a variety of out-
comes which included: time to complete ulcer healing (in weeks); ulcer status 
(healed or not healed) at 3 and 12 months; ulcer free weeks (amount of time 
that patient was ulcer free during the 12 month follow-up period) and patient 
health-related quality of life (HRQoL) at baseline, 3 months and 12 months. 
HRQoL was measured using the general health dimension of the SF-36. This 
outcome is scored on a 0 (poor health) to 100 (good health) scale.

8.2 Comparison of two groups of paired observations – 
continuous outcomes
One common problem is the comparison of paired data, for example, the 
response of one group under different conditions as in a cross-over trial, or 
of matched pairs of subjects. When there is more than one group of observa-
tions it is vital to distinguish the case where the data are paired from that 
where the groups are independent. Paired data may arise when the same 
individuals are studied more than once, usually in different circumstances, or 
when individuals are paired as in a case-control study. For example, as part 
of the leg ulcer trial, data were collected on health related quality of life 
(HRQoL) at baseline, 3 months and 12 months follow-up. We may be inter-
ested in seeing if there is change in HRQoL between baseline and three 
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months follow-up in those patients whose leg-ulcer had healed at 3 months? 
Methods of analysis for paired samples are summarised in Figure 8.1.

HRQoL at baseline and 3 months are both continuous variables and the 
data are paired as measurements are made on the same individuals at base-
line and 3 months; therefore interest is in the mean of the differences not the 
difference between the two means. If we assume that the paired differences 
are Normally distributed, then the most appropriate summary measure for 
the data is the sample mean, at each time point, and the best comparative 
summary measure is the mean of the paired difference in HRQoL between 
baseline and 3 months. In this example a suitable null hypothesis (H0) is that 
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(differences)
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Paired t-test
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Figure 8.1 Statistical methods for differences or paired samples



 

there is no difference (or change) in mean HRQoL at baseline and 3 months 
follow-up in patients whose leg ulcer had healed by 3 months, that is, m3Month

− mBaseline = 0. The alternative hypothesis (HA) is that there is a difference (or 
change) in mean HRQoL at baseline and 3 months follow-up in patients 
whose leg ulcer had healed by 3 months, that is m3Month − mBaseline ≠ 0. Using 
the fl ow diagram of Figure 8.1, the most appropriate hypothesis test appears 
to be the paired t-test.

Paired t-test

Two groups of paired observations, x11, x12,  .  .  .  , x1n in Group 1 and x21,
x22,  .  .  .  , x2n in Group 2 such that x1i is paired with x2i and the difference 
between them, di = x1i − x2i. The null hypothesis is that the mean difference 
in the population is zero.

Assumptions

• The di’s are plausibly Normally distributed. It is not essential for the origi-
nal observations to be Normally distributed.

• The di’s are independent of each other.

Steps

• Calculate the differences di = x1i − x2i, i = 1 to n.
• Calculate the mean d  and standard deviation, sd of the differences di.
• Calculate the standard error of the mean difference SE d s nd( ) =

• Calculate the test statistic t
d

SE d
= ( )

Under the null hypothesis, the test statistic, t is distributed as Student’s t,
with degrees of freedom (df), df = n − 1.

It is a common mistake to assume in such cases that because the basic 
observations appear not to have Normal distributions, then the methods 
described here do not apply. However, it is the differences, that is, the 3-
month minus baseline HRQoL, that have to be checked for the assumption 
of a Normal distribution, and not the basic observations. In fact the differ-
ences appear to have an approximately symmetrical distribution, as shown 
by the histogram in Figure 8.2.

There were 36 patients with a healed leg ulcer at 3 months and the summary 
statistics for the HRQoL of these subjects are shown in the top half of the 
computer output in Table 8.1. We have a mean difference d = 7.3 and the 
SD(d) = 16.5, and hence SD(d ) = SE(d ) = 16.5/ 36 = 2.8. In this example 
the data are paired and the degrees of freedom are therefore one less 
than the number of patients in the study, that is, df = n − 1 = 36 − 1 = 35. The 
test or t-statistic is t = 7.3/2.8 = 2.66. This value is then compared to values of 
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the t-distribution with df = 35 df. Table T3 (p. 319), which only goes up to df
= 30, suggests a p-value of somewhere between 0.02 and 0.01. The computer 
output in Table 8.1 gives a precise p-value = 0.012.

The 100 (1 − a)% confi dence interval for the mean difference in the popu-
lation is:

d t SE d d t SE ddf df− × ( )⎡⎣ ⎤⎦ + × ( )⎡⎣ ⎤⎦, ,toα α ,

where tdf,a is taken from the t distribution with df = n − 1 degrees of 
freedom.

From Table T1 with df = 35, t35,.05 ≈ 2.03, giving the 95% CI for the mean 
difference as

7 3 2 03 2 8. . .− ×( ) ×( )to 7.3 + 2.03 2.8

or 1.7 to 12.9.
The computer output for the comparison of HRQoL for these 36 patients 

at baseline and 3 months shows that the result is statistically signifi cant 
(Table 8.1). The confi dence interval of the difference suggests that we 
are 95% confi dent that HRQoL has changed by between 1.7 and 12.9 

Figure 8.2 Histogram of differences in HRQoL between baseline and 3 months (n = 36)



 

points over the period and the best estimate is a mean change of 7.3 points. 
In actual fact HRQoL has declined over time from a mean of 66.3 at baseline 
to 58.9 at 3 months.

The assumptions underlying the use of the paired t-test are outlined above. 
If these are not met, Figure 8.1 shows that a non-parametric alternative, the 
Wilcoxon signed rank sum test, can be used, to assess whether the differences 
are centred around zero.

Wilcoxon (matched pairs) signed rank test

This is used when the assumptions underlying the paired t-test are not valid. 
It is a test of the null hypothesis that there is no tendency for the outcome 
under one set of conditions (in this current example – at the start of the study) 
to be higher or lower than under the comparison set of conditions (in this 
current example – after 3 months). The computer output for the comparison 
of HRQoL for these 36 patients at baseline and 3 months shows that the 
result is statistically signifi cant (Table 8.2) with a p-value = 0.012.

Table 8.1 Computer output for paired t-test

Paired samples statistics

 Mean n SD SE

Health related
 quality of life: 66.3 36 18.8 3.1
 baseline
Health related
 quality of life: 58.9 36 22.0 3.7
 3 months

Paired samples t-test

 Paired differences   

    95% CI of the
    Difference

HRQoL Mean SD SE Lower Upper t df p-value

Baseline − 3-month 7.3 16.5 2.8 1.7 12.9 2.661 35 0.012*

*The p-value or probability of observing the test statistic of 2.661 or more extreme under the null 
hypothesis is 0.012. This means that this result is unlikely when the null hypothesis is true (of no dif-
ference in HRQoL). The result is said to be statistically signifi cant because the p-value is less than 
the signifi cance level (α) set at 5% and there is suffi cient evidence to reject the null hypothesis. The 
alternative hypothesis that there is a difference or change in mean HRQoL between baseline and 3 
months in patients whose leg ulcer had healed by 3 months, is accepted.

 8.2 COMPARISON OF TWO GROUPS OF PAIRED OBSERVATIONS – CONTINUOUS OUTCOMES 123



 

124 TESTS FOR COMPARING TWO GROUPS OF CATEGORICAL OR CONTINUOUS DATA

Wilcoxon (matched pairs) signed rank test

Two groups of paired observations, x11, x12,  .  .  .  , x1n in Group 1 and x21,
x22,  .  .  .  , x2n in Group 2 such that x1i is paired with x2i and the difference 
between them, di = x1i − x2i. The null hypothesis is that the median difference 
in the population is zero.

Assumptions

• The di’s come from a population with a symmetric distribution.
• The di’s are independent of each other.

Steps

• Calculate the differences di = x1i − x2i, i = 1 to n.
• Ignoring the signs of the differences, rank them in order of increasing 

magnitude from 1 to n′, with zero values being ignored (so n′ is the number 
of non-zero differences, and so may be less than the original sample size 
n). If some of the observations are numerically equal, they are given tied 
ranks equal to the mean of the ranks which would otherwise have been 
used.

Table 8.2 Example computer output for Wilcoxon signed rank sum test

 Ranks n Mean Sum of
   rank ranks

HRQoL: 3 months − Baseline Negative 22a 16.11 354.50
 Positive  8b 13.81 110.50d

 Ties  6c

 Total 36

aHRQoL: 3 months < Baseline.
bHRQoL: 3 months > Baseline.
cHRQoL: 3 months = Baseline.
dT +, the sum of the positive ranks.

Test statistics

 HRQoL:
 3 month − Baseline

z −2.511a

p-value 0.012

aBased on positive ranks.
The p-value or probability of observing the test statistic of −2.511 or more extreme under the null 
hypothesis is 0.012. This means that this result is unlikely when the null hypothesis is true (of no dif-
ference in HRQoL). The result is said to be statistically signifi cant because the p-value is less than 
the signifi cance level (a) set at 5% or 0.05 and there is suffi cient evidence to reject the null hypothesis. 
The alternative hypothesis that there is a difference or change in HRQoL between baseline and 3 
months in patients whose leg ulcer had healed, is accepted.



 

• Calculate, T +, the sum of the ranks of the positive values.

• Calculate the test statistic z
T

n n

n n n
=

− ′ ′ +( )⎛
⎝

⎞
⎠

′ ′ +( ) ′ +( )[ ]

+ 1
4

1 2 1
24

Under the null hypothesis, z has an approximately Normal distribution, with 
mean n′(n′ + 1)/4 and variance n′(n′ + 1)(2n′ + 1)/24.

8.3 Comparison of two independent groups – 
continuous outcomes
Before comparing two independent groups it is important to decide what type 
of data the outcome is and how it is distributed, as this will determine the most 
appropriate analysis. This section describes the statistical methods available for 
comparing two independent groups, when we have a continuous outcome.

For example, one of the main questions of interest in the leg ulcer trial was 
whether there was a difference in the number of ulcer-free weeks between 
the Intervention and the Control groups. As the number of ulcer-free weeks 
is continuous data and there are two independent groups, assuming the data 
are Normally distributed in each of the two groups, then the most appropriate 
summary measure for the data is the sample mean and the best comparative 
summary measure is the difference in the mean number of ulcer free weeks 
between the two groups. Under these assumptions, the fl ow diagram of 
Figure 8.3 suggests that the two independent samples t-test should be used. 
The independent samples t-test is used to test for a difference in the mean 
value of a continuous variable between two groups.

When conducting any statistical analysis one should check that the 
assumptions which underpin the chosen method are valid. The assumptions 
underlying the two independent samples t-test are outlined below.

Independent two-sample t-test for comparing means

Suppose we wish to test the null hypothesis that the means from two popula-
tions, estimated from two independent samples, are equal.

• Sample 1: number of subjects n1, mean x1, standard deviation s1,
• Sample 2: number of subjects n2, mean x2, standard deviation s2.

Assumptions

1. The groups are independent.
2. The variables of interest are continuous.
3. The data in both groups have similar standard deviations.
4. The data is Normally distributed in both groups.
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Figure 8.3 Statistical methods for comparing two independent groups or samples



 

Steps

1. First calculate the mean difference between groups x1 − x2.

2. Calculate the pooled standard deviation SDpooled = −( ) + −( )
+ −

n s n s
n n

1 1
2

2 2
2

1 2

1 1
2

.

3. Then calculate the standard error of the difference between two means 

SE SDpooledx x
n n

1 2
1 2

1 1−( ) = × + .

4. Calculate the test statistic t
x x

SE x x
= −

−( )
1 2

1 2

.

5. Compare the test statistic with the t distribution with n1 + n2 − 2 degrees 
of freedom. This gives us the probability of the observing the test statistic 
t or more extreme under the null hypothesis.

The assumption of Normality can be checked by plotting two histograms, 
one for each sample; these do not need to be perfect, just roughly symmetrical. 
The two standard deviations should also be calculated and as a rule of thumb, 
one should be no more than twice the other. At this stage, we shall assume 
the outcome, ulcer free weeks, is Normally distributed in both groups, but we 
will check this assumption later on. In this example a suitable null hypothesis 
(H0) is that there is no difference in mean ulcer free weeks between Interven-
tion and Control groups, that is, mIntervention − mControl = 0 weeks. The alternative 
hypothesis (HA) is that there is a difference in mean ulcer free weeks between 
Intervention and Control groups i.e. mIntervention − mControl ≠ 0 weeks.

The summary statistics for the ulcer free weeks for the Intervention and 
Control groups are shown in the top half of the computer output in Table 
8.3. We have a mean difference between the groups, x1 − x2 = 20.1 − 14.2 =
5.9 weeks and the standard error of this mean difference SE(x1 − x2) = 2.4 
weeks. In this example the degrees of freedom are, df = n1 + n2 − 2 or 120 +
113 − 2 = 231. The test or t-statistic is t = 5.9/2.4 = 2.485. This value is then 
compared to values of the t-distribution with df = 231. From Table T3, the 
closest tabulated value is with df = 30 but with such large df we can use the 
fi nal row of the table which has infi nite degrees of freedom suggesting a p-
value of somewhere between 0.02 and 0.01. This is clearly less than 0.05. The 
computer output in Table 8.3 shows that the exact p-value = 0.014.

The 100 (1 − a)% confi dence interval for the mean difference in the popu-
lation is:

x x t SE x x x x t SE x xdf df1 2 1 2 1 2 1 2−( ) − × −( )[ ] −( ) + × −( )[ ], ,to ,α α

where tdf,a is taken from the t distribution with df = n1 + n2 − 2. For a 95% 
CI t231,0.05 = 1.970. Thus giving the 95% CI for the mean difference as: 
5.9 − (1.970 × 2.4) to 5.9 + (1.970 × 2.4) or 1.2 to 10.5 weeks.
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Table 8.3 shows the computer output for comparing ulcer-free weeks 
between the two groups using the two independent samples t-test. It can be 
seen that there is a signifi cant difference between the groups; the 95% 
CI for the difference suggests that patients in the clinic group have 
between 1.2 and 10.5 more ulcer-free weeks than patients in the control 
group and the best estimate is a mean difference of 5.9 more ulcer-free 
weeks.

When conducting any statistical analysis it is important to check that 
the assumptions which underpin the chosen method are valid. For the two 
independent samples t-test, the assumption that the outcome is Normally 
distributed in each group can be checked by plotting two histograms, one 
for each sample. Figure 8.4 shows two histograms for the ulcer-free 
weeks outcome. The outcome in both groups is clearly not Normally dis-
tributed and both distributed appear positively skewed. Hence in these 
circumstances it looks like the two-independent samples t-test is not the 
most appropriate test. The fl ow diagram of Figure 8.3, suggests that the 
Mann–Whitney U test may be a more suitable alternative. An alternative
would be to use the log rank test, suitable for survival data and described in 
Chapter 10.

Table 8.3 Computer output from the two independent samples t-test

Group statistics

 Group n Mean SD SE

Leg ulcer-free time (weeks) Intervention 120 20.1 18.5 1.7
 Control 113 14.2 17.6 1.7

The standard deviations for the two groups are similar.

Independent samples t-test

t-test for equality of means

t df p-value Mean SE 95% CI of the
    difference difference difference

      Lower Upper

Leg ulcer-free 2.485 231 0.014* 5.9 2.4 1.2 10.5
 time (weeks)

*The p-value is 0.014. Thus the results are unlikely when the null hypothesis (that there is no differ-
ence between the groups is true). The result is said to be statistically signifi cant because the p-value
is less than the signifi cance level (a) set at 5% or 0.05 and there is suffi cient evidence to reject the 
null hypothesis and accept the alternative hypothesis, that there is a difference in mean ulcer free 
weeks between the Intervention and Control groups.



 

Mann–Whitney U test

When the assumptions underlying the t-test are not met, then the non-
 parametric equivalent, the Mann–Whitney U test, may be used. There are 
two derivations of the test, one due to Wilcoxon and the other to Mann and 
Whitney. It is better to call the method the Mann–Whitney U test to avoid 
confusion with the paired test due to Wilcoxon.

The Mann–Whitney test requires all the observations to be ranked as 
if they were from a single sample. We can now use two alternative test 
statistics, U and W. The statistic W (due to Wilcoxon) is simply the sum 
of the ranks in the smaller group and is easier to calculate by hand. The 
statistic U (due to Mann and Whitney) is more complicated. U is the number 
of all possible pairs of observations comprising one from each sample 
for which the value in the fi rst group precedes a value in the second 
group. Whilst the independent samples t-test is specifi cally a test of the null 
hypothesis that the groups have the same mean value, the Mann–Whitney 
U test is a more general test of the null hypothesis that the distribution 

Figure 8.4 Histograms of ulcer free weeks by group (n = 233)
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of the outcome variable in the two groups is the same; it is possible for the 
outcome data in the two groups to have similar measures of central tendency 
or location, such as mean and medians, but different distributions.

Suppose we wish to test the null hypothesis that two samples come from 
the same from populations. The data are at least ordinal and from two inde-
pendent groups of size n1 and n2 respectively.

Assumptions

1. The groups are independent.
2. The variables of interest are at least ordinal (can be ranked).

Steps

First combine the two groups and rank the entire data set in increasing order 
(smallest observation to the largest). If some of the observations are numeri-
cally equal, they are given tied ranks equal to the mean of the ranks which 
would otherwise have been used. Sum the ranks for one of the groups. Let 
W be the sum of the ranks for the n1 observations in this group.

If there are no ties or only a few ties, calculate the test statistic

z
W

n n n

n n n n
=

− + +( )⎛
⎝

⎞
⎠

+ +( )

1 1 2

1 2 1 2

1
2

1
12

.

Under the null hypothesis that the two samples come from the same popu-
lation, the test statistic, z, is approximately Normally distributed with mean 
zero, and standard deviation of 1, and can be referred to Table T1 to calculate 
a p-value.

Many text books give special tables for the Mann–Whitney U test, when 
sample sizes are small, that is when n1 and n2 are less than 20. However, the 
above expression is usually suffi cient. The formula is not very accurate if 
there any many ties in the data. The reader is referred to Armitage et al 
(2002) in such situations.

Examining the output from the Mann–Whitney U test in Table 8.4 we see 
there is suffi cient evidence to reject the null hypothesis and accept the alter-
native hypothesis that there is a difference in ulcer free weeks between the 
Intervention and Control groups.

However, this example illustrates that the t-test is very robust to violations 
of the assumptions of Normality and equal variances, particularly for moder-
ate to large sample sizes, as the p-values and conclusions, from both the t-test
and Mann–Whitney test are the same, despite the non-Normal distribution 
of the data.



 

Discrete count data

In the majority of cases it is reasonable to treat discrete count data, such as 
number of children in a family or number of visits to a general practice clinic 
in a year, as if they were continuous, at least as far as the statistical analysis 
goes. Ideally, there should be a large number of different possible values, but 
in practice this is not always necessary. However, where ordered categories 
are numbered such as stage of disease or social class, the temptation to treat 
these numbers as statistically meaningful must be resisted. For example, it is 
not sensible to calculate the average social class or stage of cancer, and in 
such cases the data should be treated in statistical analyses as if they are 
ordered categories.

Comparing more than two groups

The methods outlined above can be extended to more than two groups. For the 
independent samples t-test, the analogous method for more than two groups is 
called the Analysis of Variance (ANOVA) and the assumptions underlying it 
are similar. The non-parametric equivalent for the method of ANOVA when 
there are more than two groups is called the Kruskall–Wallis test. A fuller expla-
nation of these methods is beyond the scope of this chapter and the interested 
reader is referred to Altman (1991) or Armitage et al (2002).

Table 8.4 Computer output for Mann–Whitney U test

Ranks

 Group n Mean rank Sum of ranks

Leg ulcer-free time (weeks) Intervention 120 126.87 15 224.0
 Control 113 106.52 12 037.0
 Total 233

Test statistics

 Leg ulcer-free
 time (weeks)

Mann–Whitney U 5 596.0
Wilcoxon W 12 037.0
z −2.388
p-value 0.017*

*p-value: probability of observing the statistic, W or U, under the null hypothesis. As the value of 
0.017 is less than the signifi cance level (a) set at 0.05 or 5% this means that the result obtained is 
unlikely when the null hypothesis is true. Thus there is suffi cient evidence to reject the null hypothesis 
and accept the alternative hypothesis that there is a difference in ulcer free weeks between the 
Intervention and Control groups.
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8.4 Comparison of two independent groups – 
categorical outcomes
When comparing two independent groups where the outcome is categorical 
rather than continuous, for example in the leg ulcer trial, we may wish to 
know whether there was a difference between the groups in the proportions 
with healed ulcers at 3 months follow-up. With two independent groups 
(Intervention and Control) and a binary (ulcer healed versus not healed) 
rather than a continuous outcome, the data can be cross-tabulated as in the 
top part of the computer output in Table 8.5. This is an example of a 2 × 2 
contingency table with two rows (for treatment) and two columns (for 
outcome), that is, four cells in total. The most appropriate summary measure 
is simply the proportion in the sample whose leg ulcer has healed at 3 months 
and the best comparative summary measure is the difference in proportions 
healed between the two groups.

Table 8.5 Computer output for the chi-squared test

Leg ulcer healed at 3 months – group crosstabulation

   Group

   Intervention Control Total

Leg ulcer healed Not healed Count   98  96 194
 at 3 months  % within Group  (81.7%)  (85.0%)  (83.3%)
 Healed Count   22  17  39
  % within Group  (18.3%)  (15.0%)  (16.7%)
Total  Count  120 113 233
  % within Group (100.0%) (100.0%) (100.0%)

Chi-square tests

 Value df p-value Exact p-value

Pearson chi-square  0.452b 1 0.502c

Continuity correctiona  0.247 1 0.620
Fisher’s exact test    0.599
n of valid cases 233

aComputed only for a 2 × 2 table. To improve the approximation for a 2 × 2 table, Yates’ correction 
for continuity is sometimes applied.
b0 cells (0%) have expected count less than 5.
The minimum expected count is 18.91. This suggests that the chi-squared test is valid as all the counts 
are greater than 5.
cThe p-value of 0.502 indicates that the results obtained are likely if the null hypothesis (of no 
association between the rows and columns of the contingency table above) is true. Thus there is 
insuffi cient evidence to reject the null hypothesis and the results are said to be not statistically 
signifi cant.
In a 2 × 2 table when expected cell counts are less than 5, or any are less than 1 even Yates’ correc-
tion does not work and Fisher’s exact test is used.



 

Figure 8.3 shows that there are several different approaches to analysing 
these data. One approach which we outlined in Chapter 7 would be to 
compare the proportions of ulcers healed at 3 months follow-up in the two 
groups. In this example a suitable null hypothesis (H0) is that there is no dif-
ference in outcomes, the proportion of patients with healed leg ulcers, at 3 
months between Intervention and Control groups, that is, pInt − pCon = 0. The 
alternative hypothesis (HA) is that there is a difference in outcomes, propor-
tion of patients with healed leg ulcers, at 3 months, between Intervention and 
Control groups, that is, pInt − pCon ≠ 0.

The hypothesis test assumes that there is a common proportion, p,

estimated by p
n p n p

n n
= +( )

+( )
1 1 2 2

1 2

 and standard error for the difference in pro-

portions is estimated by SE p p p p
n n

1 2
1 2

1
1 1−( ) = −( ) +⎛

⎝⎜
⎞
⎠⎟  (see Table 7.4). 

From this we can compute the test statistic: z = (p1 − p2)/SE(p1 − p2).
We can then compare this value to what would be expected under the null 

hypothesis of no difference, in order to get a p-value. The computer output 
in the top half of Table 8.5 gives: n1 = 120, p1 = 22/120 = 0.18; n2 = 113, 
p2 = 17/113 = 0.15 and p1 − p2 = 0.033.

p
n p n p

n n
= +( )

+( )
= ×( ) + ×( )[ ]

+( )
=1 1 2 2

1 2

120 0 183 113 0 150
120 113

38. . ..
.
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0 167
( ) =

andSE p p p p
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1 2
1 2

1
1 1

0 167 1 0 167
1
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1

113
−( ) = −( ) +⎛

⎝⎜
⎞
⎠⎟ = −( ) +⎛

⎝. . ⎜⎜
⎞
⎠⎟ = 0 049.

The test statistics is: z = (p1 − p2)/SE(p1 − p2) = 0.033/0.049 = 0.673 and the 
probability of observing the test statistic z = 0.67 or more extreme under the 
null hypothesis, using Table T1, is 0.502.

The 95% CI for the difference in proportions is:

p p p p1 2 1 21 96−( ) ± × −( )[ ]. SE

For the calculation of the confi dence interval, we do not need to make any 
assumptions about there being a common proportion p and use the formula 
in Table 6.7 for the SE(p1 + p2):

SE p p
p p

n
p p

n
1 2

1 1

1

2 2

2

1 1 0 18 0 82
120

0 15 0 85
113

−( ) = −( ) + −( ) = × + × =. . . .
00 049.

The 95% CI for the difference in proportions is:
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0 033 1 96 0 049 0 033 1 96 0 049 0 063. . . . . . .( )− ×[ ] ( )+ ×[ ] −to which is  too 0 129. .

Therefore we are 95% confi dent that the true population difference in the 
proportion of leg ulcers healed, at 12 weeks, between the Clinic and Home 
treated patients lies somewhere between −6.3% to 12.9%, but our best esti-
mate is 3.3%.

Figure 8.3 also shows that an alternative approach to the comparisons of 
two proportions, assuming a large sample and all expected frequencies >5, is 
the chi-squared test. The null hypothesis is that the two classifi cations (group 
and ulcer-healed status at 3 months) are unrelated in the relevant population 
(leg ulcer patients). More generally the null hypothesis, H0, for a contingency 
table is that there is no association between the row and column variables in 
the table, that is, they are independent. The general alternative hypothesis, 
HA, is that there is an association between the row and column variables in 
the contingency table and so they are not independent or unrelated. For the 
chi-squared test to be valid two key assumptions need to be met, as outlined 
below. If these are not met, Figure 8.3 suggests that Fisher’s exact test can 
be used for 2 × 2 tables.

Chi-squared test for association in r ¥ c contingency tables

Suppose we wish to test the null hypothesis, for an r × c contingency table, 
that there is no association between the row and column variables in the 
table, i.e. they are independent.

Assumptions

• Two independent unordered categorical variables that form an r × c con-
tingency table.

• At least 80% of expected cell counts >5.
• All expected cell counts >1.

Steps

1. Calculate the expected frequency (Eij) for the observation in row i and 
column j of the r × c contingency table:

E
Row total R Column total C

N
ij

i j=
( ) × ( )

, where N is the total sample size.

2. For each cell in the table calculate the difference between the observed 
value and the expected value (Oij − Eij).

3. Square each difference and divide the resultant quantity by the expected 
value (Oij − Eij)2/Eij.

4. Sum all of these to get a single number, the χ2 statistic.



 

χ 2
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5. Compare this number with tables of the chi-squared distribution with the 
following degrees of freedom: df = (no. of rows − 1) × (no. of columns − 1).

Table 8.6 shows more details of the calculations and how we compare what 
we have observed (O) with what we would have expected (E) under the null 
hypothesis of no association. If what we have observed is very different from 
what we would have expected, then we reject the null hypothesis.

The value of O E
E
−( )∑

2
 is 0.45; this is given in Table 8.5 as ‘Pearson chi-

square’. This value can be compared with tables for the chi-squared distribu-
tion with df = (no. of rows − 1) × (no. of columns − 1) = (2 − 1) × (2 − 1) = 1. 
Under the null hypothesis of no association the probability of observing this 
value of the test statistic c2 or more, is p-value = 0.502.

If more than 20% of expected cell counts are less than 5 then the 
test statistic does not approximate a chi-squared distribution. If any 
expected cell counts are <1 then we cannot use the chi-squared distribu-
tion. In large tables we may have to combine categories to make bigger 
numbers (providing it’s meaningful). The bottom half of Table 8.5 shows 
the typical computer output for a chi-squared test. In this example it 
appears that the chi-squared test is valid as all the expected counts are 
greater than 5.

In 2 × 2 tables, even when expected cell counts are bigger than 5, 
the observed value of c2 (calculated from count data) can be made closer 
to the true c2 value (calculated on a continuous scale) using Yates’ conti-
nuity correction, c2

CC. This simply involves subtracting 0.5 from the abso-
lute value for the difference between the observed and expected cell values,

χCC
2 = − −( )∑ O E

E
0 5 2. .

Table 8.6 Observed and expected cell counts for leg ulcer data

O E O − E (O - E)2/E

Intervention/healed  22  20.1 1.9 0.18
Intervention/not healed  98  99.9 1.9 0.04
Control/healed  17  18.9 −1.9 0.19
Control/not healed  96  94.1 −1.9 0.04
Total 233 233 0 0.45
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Again this value can be compared with Table T4 for the chi-squared distribu-
tion with df = 1. Under the null hypothesis of no association, the probability 
of observing this value of the test statistic or more, is about 0.620.

Fisher’s exact test

In a 2 × 2 table, when all the expected cell counts are smaller than 5, or any 
<1 even Yates’ correction does not work. There is also a special method 
known as Fisher’s exact test for 2 × 2 tables with very small expected frequen-
cies. We need to go back to defi nitions of basic probability and estimate 
the probability of falsely rejecting the null hypothesis directly, based on 
all the possible tables, or more extreme than we could have observed. 
This is very time-consuming by hand! Fortunately, most computer packages 
will calculate Fisher’s exact test for all 2 × 2 tables, as the output in Table 8.5 
shows. A fuller explanation of how to derive Fisher’s exact test is given 
in Section 8.9.

Chi-squared test for trend in a 2 ¥ c table

An important class of tables are 2 × c tables, where the multi-level factor has 
c ordered levels. For example patients might score their pain on an integer 
scale from 1 to 5 on one of two treatments. In this case the chi-squared test 
is very ineffi cient, because it fails to take account of the ordering and one 
should use the chi-squared test for trend. A fuller explanation of the chi-
squared test for trend in a 2 × c table is given in Section 8.9.

8.5 Comparison of two groups of paired observations – 
categorical outcomes
Just as for continuous data, a special analysis is required if paired or matched 
data are involved. As we said before, these can arise from cross-over clinical 
trials and matched-pair case–control studies.



 
Consider the following four case–control pairs:

• Pair 1 Both with undescended testes
• Pair 2 Both with descended testes
• Pair 3 Case with undescended testes, control with descended testes
• Pair 4 Case with descended testes, control with undescended testes.

If all matched pairs were like pairs 1 and 2 we would be unable to answer 
the question: ‘Do undescended testes result in a greater risk of testicular 
cancer?’ It is only the discordant pairs 3 and 4 that provide relevant informa-
tion in that cases and controls differ in their response. If there were many 
more matched pairs like pair 3 than pair 4, we would have evidence against 
the null hypothesis, and answer the above question in the affi rmative. If there 
were about the same number of matched pairs like pair 3 and pair 4, we 
would answer the above question in the negative. If there were many more 
matched pairs like pair 4 than pair 3, we would have evidence that unde-
scended testes exert a protective effect.

In this example the appropriate null hypothesis is that the expected 
values of f and g are equal. Given that we have f + g discordant 
pairs, we would expect half to be pair 3 (cases exposed, controls not) 
and half to be pair 4 (controls exposed, cases not). Thus O1 = f while 

Example from the literature: Matched case–control study – 
testicular cancer

Brown et al (1987) studied all cases of testicular cancer in a defi ned area 
from 1 January 1976 to 30 June 1986. The controls were men in the same 
hospital as the cases, who were within two years of age and belonged to 
the same ethnic group as the cases but suffering from a malignancy other 
than testicular cancer. They conducted a matched case-control study, and 
one of the questions asked of both cases and controls was whether or not 
their testes were descended at birth. Part of the results of their study is 
given in Table 8.7.

Table 8.7 Results of a matched case–control study (Brown et al, 1987)

    Controls without testicular cancer

   Undescended testes Total

   Yes No

Cases with Undescended Yes 4 (e)  11 ( f )  15
 testicular  testes No 3 (g) 241 (h) 244
 cancer  Total 7 252 259
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E1 = ( f + g)/2 and O2 = g while E2 = ( f + g)/2. A chi-squared test using the 
general expression for χ2 given in Section 8.4 leads to the McNemar’s test.

χMcNemar
2 = −( )

+
f g
f g

2

.

For the data of Brown et al (1987) we have χMcNemar
2 = −( )

+
=11 3

11 3
4 57

2

. . We 

compare this with the c2 distribution with df = 1 (Table T4) and fi nd that p
is approximately 0.0325.

McNemar’s test may be adjusted for small values of either f or g, to 

χC
2 = − −( )

+
f g

f g
1 2

. The correction of −1 makes little difference to the calcula-

tions in large samples. For the data of Brown et al (1987) we have 

χC
2 = − −( )

+
=11 3 1

11 3
3 5

2

. . We compare this with the tabulated values of c2

with df = 1 and fi nd that p-value ≈ 0.05. In fact, more exact calculations may 
be obtained by using the fact that the square root of a c2 distribution with 
df = 1 is a standard Normal distribution. The square root of 3.5 is z = 1.87, 
and referring to Table T1 (p. 316) gives p = 0.06 so we do not have enough 
evidence to reject the null hypothesis. An exact test for paired data, equiva-
lent to Fisher’s exact test for unpaired data, is described in Section 8.10.

8.6 Non-Normal distributions
Non-parametric tests

Non-parametric methods such as the Wilcoxon signed rank test and the Mann–
Whitney U test described here provide alternative data analysis techniques 
without assuming anything about the shape of the data i.e. they do not assume 
an underlying distribution for the data. Hence, non-parametric methods often 
referred to as ‘distribution free’ methods. Non-parametric techniques are 
usually based on the ordered or ranked values of the observations in the sample 
and not the actual data. Non-parametric methods are used when:

• Data does not seem to follow any particular shape or distribution (for 
example, the Normal distribution);

• Assumptions underlying parametric tests are not met;
• A plot of the data appears to be very skewed;
• There are potential outliers in the dataset.

It is important to note that it is the test that is non-parametric, not the data. 
Non-parametric methods should not be considered as an alternative way to 
fi nd signifi cant p-values!



 

Why not always use non-parametric tests?

It can be argued that since non-parametric tests can always be used-why 
not use them always! The argument has much appeal but can be answered 
albeit in somewhat technical terms. It turns out that if a non-parametric test 
is used when the data follow a Normal distribution, then the calculated p-
value will always exceed that that would be obtained using the t-test. Thus 
one is less likely to declare a result signifi cant using a non-parametric test 
than using a parametric test with the same data. In these circumstances 
the non-parametric test is termed less powerful, although the loss of power 
is often not very great. This is because the more assumptions one is prepared 
to make about the data the more precisely one can investigate hypotheses. 
The corresponding non-parametric confi dence intervals will also be wider 
and more diffi cult to calculate, although help with this is provided by Gardner 
et al (2000, Chapter 5).

However, the overwhelming argument against the routine use of non-
 parametric procedures is that they are not fl exible enough. For example, they 
do not easily allow for analyses such as multiple regression, which take into 
account other characteristics of the groups being compared.

There is also some misunderstanding about the fl exibility of parametric 
tests. For example, for the data summarised in Figure 8.4, it is clearly indi-
cated that a Normal distribution for the outcome, ulcer-free weeks, does not 
seem reasonable for either of the Intervention or Control groups. However, 
this does not in itself invalidate the use of the t-test. We are interested in 
comparing the sample means of the two groups and the Central Limit 
Theorem, which we described in Chapter 6, ensures that the sample means 
will be approximately Normally distributed, when the sample size is suffi -
ciently large (over 100 subjects per group in this example).

8.7 Degrees of freedom
The number of degrees of freedom has been discussed in two situations: the 
fi rst with respect to t-tests and the second with respect to c2 tests. In fact, the 
number of degrees of freedom depends on two factors: fi rst, the number of 
groups we wish to compare; and second, the number of parameters we need 
to estimate to calculate the standard deviation of the contrast of interest. 
Thus for the c2 test for the comparison of two proportions, which is equiva-
lent to a z-test in large samples (see Section 8.4), there are two groups to 
compare; hence we have df = 1 for the between-groups comparison. Once 
the proportion is estimated in each group, a direct estimate of the standard 
error is pq n/( ), without estimation of an additional parameter. This is 
because the binomial distribution, for a particular n, is completely deter-
mined by p.
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In contrast, when comparing two means, whereas there are degrees of 
freedom for between-groups, there are also degrees of freedom for estimat-
ing s. How the degrees of freedom are calculated depends on the particular 
problem. For a paired situation df = (number of subjects minus one); for an 
unpaired situation df = (total number of subjects minus two), in the case of 
equal group sizes this is n − 1 for each group. Thus the t-test has implicitly 
two sets of degrees of freedom attached to it. The fi rst, a degree of freedom 
for between-groups, the second one for within-groups. However, the fi rst of 
these degrees of freedom is not usually explicitly referred to as it is always 
unity. The z-test is similar to the t-test, but since in this case s is assumed 
known effectively the within-groups degrees of freedom are infi nite and so 
these also are seldom explicitly referred to.

8.8 Points when reading the literature
1. Have clinical importance and statistical signifi cance been confused?
2. Has the sample size been taken into account when determining the choice 

of statistical tests; that is, are small-sample tests used when appropriate?
3. Is it reasonable to assume that the continuous variables have a Normal 

distribution?
4. Have paired tests been utilised in the appropriate places?
5. Have confi dence intervals of the main results been quoted?
6. Is the result medically or biologically plausible and has the statistical sig-

nifi cance of the result been considered in isolation, or have other studies 
of the same effect been taken into account?

8.9 Technical details
Student’s t-distribution

In discussing the z-test in Chapter 7 two assumptions were made. The 
fi rst is that the variable under consideration follows an approximately 
Normal distribution, and second, that samples from the respective popula-
tion have always been relatively large. However, it is intuitively obvious 
that with small samples one can make less precise statements about popula-
tion parameters than one can with large samples. Thus it is necessary to 
recognise that if samples are small x and s will not always be necessarily 
close to μ and σ respectively. How does the sample size infl uence the calcu-
lations? In one way sample size is already taken into account through the 
calculation of the standard deviation of the mean, SE(x), when dividing 
by n, the square-root of the sample size. In small samples, however, 



 

values of s very far from σ will not be uncommon, and one consequence 
is that although x will still have a Normal distribution, it can no longer 
be assumed that the ratio, z = x/SE(x), will. The previous discussion effec-
tively assumed that s was close in value to the (unknown) population 
parameter s.

As a consequence it is necessary to modify the calculation of both the p-
value and a confi dence interval. For the confi dence interval za is replaced by 
tdf ,a, in the expression given for a confi dence interval for the difference 
between two means in Section 6.2, to obtain

d t SE d d t SE ddf df− × ( ) + × ( ), ,to ,α α

while the expression for z is relabelled, t
d

SE d
= ( ) . This then known as 

Student’s t-statistic. Under the null hypothesis of no difference in the means 
t is assumed to be distributed as Student’s t-distribution rather than as a 
Normal distribution.

In the expression for the confi dence interval the particular value for 
tα, depends not only on a but also on the number of degrees of free-
dom, df, on which s is estimated. We explain how to calculate degrees 
of freedom in Section 8.8. Table T3 gives some values of ta for dif-
ferent values of df and a. Examination of the bottom row of Table T3 
shows that with df = ∞, that is with very large degrees of freedom, the 
same value for ta is obtained as for za in Table T1 for each value of 
a. However, the values of ta get larger as the df get smaller. This refl ects 
the increasing uncertainty concerning the estimate of s as sample sizes 
get smaller.

Fisher’s exact test

If any expected value in a 2 × 2 table is less than about 5, the p-value given 
by the chi-squared test is not strictly valid.

Given the notation of Table 8.8, the probability of observing the par-

ticular table is 
m n r s

N a b c d
! ! ! !

! ! ! ! !
, where n! means 1 × 2 × 3 ×  .  .  .  × (n − 1) × n

and 0! and 1! are both taken to be unity. We next calculate the probability 
of other tables that can be identifi ed that have the same marginal totals, m,
n, r, s and also give as much or more evidence for an association between the 
factors. These probabilities are then summed and for a two-sided test we 
double the probability so obtained.
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Worked example: calculation of Fisher’s exact test

The probability of observing this table, is

P i( ) = =8 32 20 20
40 2 6 18 14

0 095760
! ! ! !
! ! ! ! !

. .

There are two rearrangements of the table (Table 8.10), which give as 
much or more evidence for the association between mortality and type of 
orthopaedic ward; that is, greater odds ratios. These are:

The probabilities associated with these tables are P(ii) = 0.020160 and 
P(iii) = 0.001638. Thus the total probability is 0.095760 + 0.020160 +
0.001638 = 0.117558. For a two-sided test we double this to get p-value =
0.24.

Table 8.8 Notation for unmatched 2 × 2 table. Number of subjects classifi ed by factors 
A and B

  Factor A 

  Present Absent Total

Factor B Present a c m
 Absent b d n
Total r s N

Table 8.9 Deaths in 6 months after fractured neck of femur 
in a specialised orthopaedic ward (A) and general ward (B)

Deaths Ward Total

 A B

Yes  2  6  8
No 18 14 32
Total 20 20 40

Table 8.10 (ii) Odds ratio = 10.2 and (iii) Odds ratio = ∞

Deaths Ward  Total Ward  Total

A B A B

Yes  1  7  8  0  8  8
No 19 13 32 20 12 32
Total 20 20 40 20 20 40



 

Chi-squared test for trend (2 ¥ c table)

An important class of tables are 2 × c tables, where the multi-level factor has 
ordered levels. For example patients might score their pain on an integer 
scale from 1 to 5 on one of two treatments. In this case the chi-squared test 
is very ineffi cient, because it fails to take account of the ordering and one 
should use the chi-squared test for trend. In this test one must assign scores 
to the ordered outcome. So long as the scores refl ect the ordering, the actual 
values affect the result little.

Example Consider the notation in Table 8.11, which gives the results of a 
parallel group clinical trial with ordered outcomes.

With the notation given in Table 8.11, calculate

T n p p x x a x
a n x

N

T

xp i i i i i

i i i
i

c

i

c

i

c

i

c

xx

= −( ) −( ) = − ==

==

∑∑
∑∑ 11

11

 and

== −
( )∑∑

=
n x

n x

N
i i

i i

i

c
2

2

1

.

Finally calculate X
T

T pq
xp

xx
trend
2 = ( )

2

 where q = 1 − p. This chi-squared test for 

trend has df = 1.
Thus from Table 8.11, Txp = −26 − 144 × (−12)/196 = −17.18, Txx = 228 −

(−12)2/196 = 227.27 and χ2
trend = (−17.18)2/(227.27 × 0.2653 × 0.7347) = 6.66. 

From Table T4, we fi nd p = 0.01.

Table 8.11 Results of a parallel group clinical trial of two treatments

 Outcome of trial

 Worse Same Slightly Moderately Much Total
   better better better

Treatment A (ai) 11 53 42 27 11 144
Treatment B 1 13 16 15 7  52
Total (ni) 12 66 58 42 18 196 (N)
pi = ai/ni 0.0833 0.1970 0.2759 0.3571 0.3889  0.2653 (p̄)
Score (xi) −2 −1  0 1 2
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Exact test for small samples with paired binary outcomes

The exact test requires the calculation of P
f g
f g

f g

= +( ) ⎛
⎝

⎞
⎠

+!
! !

1
2

for the table 

observed and those indicating a stronger association with the same total 
f + g of discordant pairs. These probabilities are then summed and for a 
two-sided test we double the probability so obtained.

Example In the case–control study of Brown et al (1987) the four tables for 
calculation are:

 (i) (ii) (ii) (iv)

4  11 4  12 4  13 4  14
3 241 2 241 1 241 0 241

Giving

P i P ii( ) = ⎛
⎝

⎞
⎠ = ( ) = ⎛

⎝
⎞
⎠ =14

11 3
1
2

0 022217
14

12 2
1
2

0 00
14 14!

! !
.

!
! !

., 55554

14
13 1

1
2

0 000854
14

14 0
1
2

14

P iii P iv( ) = ⎛
⎝

⎞
⎠ = ( ) = ⎛

⎝
⎞
⎠

!
! !

.
!

! !
,

114

0 000061= . .

Thus the total probability is 0.028686. For a two-sided test p = 0.057. This 
is very close to the value p = 0.06 calculated in Section 8.5 using a McNemar’s 
test with Yates’s correction.

An approximate 95% CI for the true difference in proportions can be 
calculated as follows. First calculate p1 = (e + f )/N and p2 = (e + g)/N and 

the difference between them is p p
f g

N
1 2− = −( ) . The standard error for the 

difference p1 − p2 is given by SE p p
f g f g N

N
1 2

2

−( ) =
+ − −( ){ }

. Hence, 

the 95% confi dence interval for the true difference in proportion is 
(p1 − p2) − {1.96 × SE(p1 − p2)} to (p1 − p2) + {1.96 × SE(p1 − p2)}.

8.10 Exercises
1. Table 8.12 shows the 24 hour total energy expenditure of groups of lean 

and obese women. The aim of this study was to compare total energy 
expenditure between the lean and obese women.



 

(a)  Write out a suitable null and alternative hypothesis for this problem 
and data.

(b)  Do these data suggest that women in the lean group have a different 
total energy expenditure to women in the obese group? Stating any 
assumptions you make, perform an appropriate hypothesis test to 
compare mean 24 hour total energy expenditure (MJ/day) between 
the groups of lean and obese women. Comment on the results of this 
hypothesis test.

(c) Calculate a 95% CI for the difference in mean 24 hour total energy 
expenditure (MJ/day) between the groups of lean and obese women. 
Discuss whether the confi dence interval suggests that women in the 
obese group might have higher total energy expenditure than women 
in the lean group.

2. Table 8.13 shows the results of a randomised, double-blind, placebo-
 controlled trial examining whether patients with chronic fatigue syndrome 

Table 8.12 24 hour total energy expenditure (MJ/day) in 
groups of lean and obese women (Prentice et al, 1986)

 Lean (n = 13) Obese (n = 9)

 6.13 8.79
 7.05 9.19
 7.48 9.21
 7.48 9.68
 7.53 9.69
 7.58 9.97
 7.90 11.51
 8.08 11.85
 8.09 12.79
 8.11
 8.40
 10.15
 10.88
Mean 8.066 10.298
SD 1.238 1.398

From Prentice et al (1986). High levels of energy expenditure in obese 
women. British Medical Journal, 292, 983–987: reproduced by permis-
sion of the BMJ Publishing Group.

Table 8.13 Outcomes from the RCT (Cox et al, 1991)

Treatment Outcome

 Felt better Did not feel better Total

Magnesium 12  3 15
Placebo  3 14 17
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(CFS) improved 6 weeks after treatment with intramuscular magnesium. 
The group who received the magnesium were compared to a group who 
received a placebo and outcome was feeling better (Cox et al, 1991).
(a)  Do these data suggest that the magnesium-treated CFS patients have 

different outcomes to placebo treated patients after 6 weeks of treat-
ment? Stating any assumptions you make, perform an appropriate 
hypothesis test to compare the difference in proportions feeling better 
between the Magnesium and Placebo treated groups. Comment on 
the results of this hypothesis test.

(b)  Calculate a 95% CI for the difference in the proportion of patients 
feeling better between the Magnesium and Placebo groups. Does the 
CI estimate from this data suggest that patients in the Magnesium 
group have a better outcome at six weeks than patients in the Placebo 
group?

3. A prospective double-blind clinical trial was conducted in 11 young, health, 
normally menstruating female subjects to detect any differences in energy 
intake in the pre and post phases of the menstrual cycle. The data is shown 
in Table 8.14.
(a)  Write out a suitable null and alternative hypothesis for this problem 

and data.

Table 8.14 Mean daily dietary intake (kJ) over 10 pre-
 menstrual and 10 post-menstrual days

Subject Dietary intake (kJ)

 Pre-menstrual Post-menstrual Difference

 1 5260 3910 1350
 2 5470 4220 1250
 3 5640 3885 1755
 4 6180 5160 1020
 5 6390 5645  745
 6 6515 4680 1835
 7 6805 5265 1540
 8 7515 5975 1540
 9 7515 6790  725
10 8230 6900 1330
11 8770 7335 1435
Mean 6753.6 5433.2 1320.5
SD 1142.1 1216.8  366.7

From Manocha et al (1986). A study of dietary intake in pre- and 
post-menstrual period. Human Nutrition – Applied Nutrition, 40,
213–216.



 

(b)  Do these data suggest that the mean daily dietary intake over the 10 
pre and 10 post-menstrual days is different? Stating any assumptions 
you make, perform an appropriate hypothesis test to compare mean 
daily dietary intake (kJ/day) between the pre and post-menstrual 
phases in this sample of 11 women. Comment on the results of this 
hypothesis test.

(c) Calculate a 95% CI for the difference in mean daily dietary intake 
(kJ/day) between the pre and post-menstrual phases in this sample of 
11 women. Discuss whether the confi dence interval suggests that 
women might have a lower dietary intake in the post-menstrual phase 
than women in the pre-menstrual phase.
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Summary

Correlation and linear regression are techniques for dealing with the relation-
ship between two or more continuous variables. In correlation we are looking 
for a linear association between two variables, and the strength of the asso-
ciation is summarised by the correlation coeffi cient. In regression we are 
looking for a dependence of one variable, the dependent variable, on another, 
the independent variable. In linear regression the dependent variable is con-
tinuous whereas in logistic regression it is binary. The relationship is sum-
marised by a regression equation consisting of a slope and an intercept. In 
linear regression the slope represents the amount the dependent variable 
increases with unit increase in the independent variable, and the intercept 
represents the value of the dependent variable when the independent vari-
able takes the value zero. In logistic regression the slope represents the 
change in log odds for a unit increase in the independent variable and the 
intercept the log odds when the independent variable is zero. In multiple 
regression we are interested in the simultaneous relationship between one 
dependent variable and a number of independent variables.

9.1 Introduction
Given two continuous variables measured on a group of subjects, possibly 
the simplest question to ask in this situation is: ‘Are the variables associ-
ated?’. The fi rst task would then be to plot the data. If the association appears 
linear then it is reasonable to ask: ‘How strongly are they associated?’. This 
is the question answered by correlation.

On the other hand, where it is believed that one variable is a direct cause 
of the other, or that if the values of one variable is changed, then as a direct 
consequence the other variable also changes, or if the main purpose of the 
analysis is prediction of one variable from the other, then the associations 
between them are better explored using regression rather than by simple 
correlation. The simplest possible method of describing a relationship 
between two continuous variables is by a straight line. In this case one 
variable changes in proportion to the other, and this type of relationship 
has proved very useful in medical research.

Example: Correlation or regression – anaemia in women

Consider a survey of anaemia in women, from a pre-defi ned geographical 
area. They had a blood sample taken and their haemoglobin (Hb) level 
and packed cell volume (PCV) measured. They were also asked their age, 
and whether or not they had experienced the menopause. Results from a 



 
9.2 Correlation
Some facts about the correlation coeffi cient

In Chapter 3 we described methods of plotting data when associations 
between two variables are to be explored. In such cases we would like a sta-
tistic that summarises the strength of the relationship, in much the same way 
that the mean and standard deviation summarise the location and variability 
of the data.

random sample of 20 women from the group are given in Table 9.1, which
we will use to illustrate the ideas underlying correlation and linear 
regression.

It is not clear whether Hb affects PCV or the other way around. Here 
one is interested in the association between these two variables and would 
use correlation techniques.

On the other hand, if there is a relationship between Hb and age then 
it is clear that it is growing old that affects Hb, and not the other way 
around. Thus one might wish to predict a value of Hb given a patient’s 
age, and so one would use regression for this purpose.

Example: Correlation – Hb and PCV

The scatter diagram of Figure 9.1 illustrates the relationship between Hb 
and PCV in the 20 women of Table 9.1. In this situation we are not really 
interested in causation, that is whether a high PCV causes a high Hb; but 
rather, is a high packed cell volume associated with a high Hb? The sample 
correlation coeffi cient, r, enables us not only to summarise the strength of 
the relationship but also to test the null hypothesis that the population 
correlation coeffi cient r is zero; that is, whether an apparent association 
between the variables would have arisen by chance.

The correlation coeffi cient is a dimensionless quantity ranging from −1 to 
+1. A positive correlation is one in which both variables increase together. 
A negative correlation is one in which one variable increases as the other 
decreases. When variables are exactly linearly related, then the correlation 
coeffi cient equals either +1 or −1. Values for different strengths of association 
are shown in Figure 9.2.

The correlation coeffi cient is unaffected by the units of measurement. 
Thus, if assessing the strength of association between, say, blood pressure 
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Figure 9.1 Scatter diagram of haemoglobin (Hb) and packed cell volume (PCV) in 20 
women (+ marks an additional and hypothetical data point to illustrate an outlier)

Table 9.1 Haemoglobin level (Hb), packed cell volume (PCV), age and menopausal 
status in a group of 20 women

Subject number Hb (g/dl) PCV (%) Age (years) Menopause
    0 = No, 1 = Yes

 1 11.1 35 20 0
 2 10.7 45 22 0
 3 12.4 47 25 0
 4 14.0 50 28 0
 5 13.1 31 28 0
 6 10.5 30 31 0
 7  9.6 25 32 0
 8 12.5 33 35 0
 9 13.5 35 38 0
10 13.9 40 40 1
11 15.1 45 45 0
12 13.9 47 49 1
13 16.2 49 54 1
14 16.3 42 55 1
15 16.8 40 57 1
16 17.1 50 60 1
17 16.6 46 62 1
18 16.9 55 63 1
19 15.7 42 65 1
20 16.5 46 67 1



 

When not to use the correlation coeffi cient

To determine whether the correlation coeffi cient is an appropriate measure 
of association, a fi rst step should always be to look at a plot of the raw data. 
The situations where it might be not be appropriate to use the correlation 
coeffi cient are:

Figure 9.2 Scatter plots showing data sets with different correlations: (a) strong positive, 
(b) weak positive, (c) uncorrelated and (d) weak negative

Example: Correlation – Hb and PCV

For the data from Figure 9.1, the correlation between Hb and PCV is 
found to be r = 0.6734 which we would quote as 0.67. Thus 0.67342 = 0.4535 
or 45% (only about half) of the variability of Hb can be explained by PCV, 
or vice versa.
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and age it does not matter whether blood pressure is measured in mmHg, lb 
per square inch or kPa per square cm, or PCV expressed as a percentage or 
a proportion, as the correlation coeffi cient remains unaffected.

The square of the correlation coeffi cient gives the proportion of the varia-
tion of one variable ‘explained’ by the other.
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 (i) The correlation coeffi cient should not be used if the relationship is 
non-linear.

Figure 9.3(a) shows a situation in which y is related to x by means of 
the equation y = a + bx + cx2. In this case it is possible to predict y exactly 
for each value of x. There is therefore a perfect association between x
and y. However, it turns out that r is not equal to one. This is because 
the expression for y involves an x2 term, or what is known as a quadratic 
term, and so the relationship is non-linear as is clear from the fi gure. 
Figure 9.3(b) shows a situation in which y is also clearly strongly associ-
ated with x and yet the correlation coeffi cient is zero. Such an example 
may arise if y represented overall mortality of a population and x some 
measure of obesity. Very thin and obese people both have higher mor-
tality than people with average weight for their height.

In the situations depicted by both Figure 9.3(a) and (b) there is clearly 
a close relationship between y and x, but it is not linear. In situations 
such as these, one should abandon trying to fi nd a single summary 
statistic of the relationship.

 (ii) The correlation coeffi cient should be used with caution in the presence 
of outliers.

For example, Figure 9.3(c) shows a situation in which one observation 
is well outside the main body of the data. This observation has a great 
deal of infl uence on the estimated value of the correlation coeffi cient. 
Since it is so extreme it is possible that this observation in fact comes 
from a different population from the others. Such an observation may 
arise in a study of blood loss and its relation to Hb level following inser-
tion of an IUD. The outlier might be one woman who happens to have 
a disease that causes heavy blood loss and also renders her anaemic. If 
she is excluded from the data set, the correlation coeffi cient becomes 
close to zero for the remainder.

 (iii) The correlation coeffi cient should be used with caution when the varia-
bles are measured over more than one distinct group.

Figure 9.3 Examples where the use of the correlation coeffi cient is not appropriate



 

One situation where this may occur is if observations, say PCV and 
Hb, are made on a group of patients, and also in a group of healthy 
controls. Such studies may result in two distinct clusters of points with 
zero correlation within each cluster but when combined produce the 
same effect as the outlier in Figure 9.3(c).

 (iv) The correlation coeffi cient should not be used in situations where one 
of the variables is determined in advance.

For example, if one were measuring responses to different doses of 
a drug, one would not summarise the relationship with a correlation 
coeffi cient. It can be shown that the choice of the particular drug dose 
levels used by the experimenter will result in different correlation coef-
fi cients, even though the underlying dose-response relationship is fi xed. 
Thus if the dose range chosen to investigate is narrow estimates of the 
correlation will tend to be small while if the doses are very disparate 
the estimates will tend to be large.

Tests of signifi cance

Having plotted the data, and established that it is plausible the two variables 
are associated linearly, we have to decide whether the observed correlation 
could have arisen by chance, since even if there were no association between 
the variables, the calculated correlation coeffi cient is extremely unlikely to 
be exactly zero. The associated statistical test of the null hypothesis r = 0 is 
t = r/SE(r), where r is the estimated correlation coeffi cient calculated as 

described in Section 9.6 and SE( )r
r

n
= −

−
1

2

2

. This follows a Students’ 

t-distribution with df = n − 2.

Example: Signifi cance test of a correlation – Hb and PCV

For the data from Figure 9.1, with the number of observations n = 20, 

r = 0.6734, SE( )
.

. .r = −
−

=1 0 6734
20 2

0 1742
2

The test is t = r/SE(r) = 0.6734/

0.1742 = 3.86 with df = 18. From Table T3, t18,0.001 = 3.922, hence the p-value
is a little larger than 0.001.

Thus the relationship can be summarised by saying there is a correlation 
of 0.67, and the probability of such a correlation, or one more extreme, 
arising by chance when there is in fact no relation is approximately 1 in 
1000. Thus we reject the null hypothesis and accept that Hb and PCV are 
associated.
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Assumptions underlying the test of signifi cance

The assumption underlying the test of signifi cance of a correlation coeffi cient 
is that the observations are random samples, and at least one of the two 
variables has a Normal distribution. Outlying points, away from the main 
body of the data, suggest a variable may not have a Normal distribution and 
hence invalidate the test of signifi cance. In this case, it may be better to 
replace the recorded value of each variable by their ranks. That is replace 
the continuous variable, say the xi of individual i, by its’ corresponding rank 
position amongst the n individuals in the study. The rank having a value of 
between 1, if the observation was the smallest of the group, to n if it was the 
largest. The correlation coeffi cient is then calculated in the same manner but 
with the ranks for each variable replacing the original observation pair for 
each subject.

When the correlation coeffi cient is based on the original observations it is 
known as the Pearson correlation coeffi cient. When it is calculated from the 
ranks of the data it is known as the Spearman rank correlation coeffi cient – 
the assumption of Normality is no longer required for this.

Example: Spearman and Pearson correlation coeffi cients – 
Hb and PCV

Consider an additional subject for Table 9.1, with a Hb level of 8 g/dl and 
a PCV of 60%, shown by a ‘+’ in Figure 9.1. As one can see, such a woman 
is well outside the main body of the data. Including her, the estimated 
Pearson correlation coeffi cient is now reduced from 0.67 to 0.29, and the 
test of signifi cance becomes t = 1.32, df = 19. Use of Table T3 gives 
p = 0.20, which is no longer statistically signifi cant.

For the 20 women of Table 9.1 the corresponding Spearman rank 
correlation coeffi cient is rSpearman = 0.63, df = 18 and p = 0.003 while includ-
ing the outlying (extra) point reduces rSpearman to 0.41, with df = 19 and 
p = 0.067. Thus, the reduction is not as great for the Spearman as the 
Pearson correlation coeffi cient.

However, in both cases the overall effect of including the additional 
subject is to reduce the correlation, and to render the statistical test less 
signifi cant.

9.3 Linear regression
The regression line

In regression, we assume that a change in x will lead directly to a change 
in y – hence, as opposed to when considering correlation, x and y have a 



 

different status. Often we are interested in predicting y for a given value of 
x and it would not be logical in these circumstances to believe that y caused 
x. It is conventional to plot the dependent variable on the vertical or y-axis
and the independent variable on the horizontal or x-axis.

Example: Linear regression – Hb and age

The data from Table 9.1 of Hb level and age are plotted in Figure 9.4. It 
is logical to believe that increasing age may affect Hb level, and not the 
other way around.

The equation y = a + bx is defi ned as the linear regression equation, where 
a is the intercept, and b is the regression coeffi cient. As we have done earlier, 
the Greek letters are used to show that these are population parameters. The 
regression equation is an example of what is often termed a model with which 
one attempts to model or describe the relationship between y and x. On a 
graph, a is the value of the equation when x = 0 and b is the slope of the line. 
When x increases by one unit, y will change by b units.

Given a series of n pairs of observations (x1, y1), (x2, y2)  .  .  .  (xn, yn), in which 
we believe that y is linearly related to x, what is the best method of estimating 
a and b? We think of the parameters a and b as characteristics of a popula-
tion and we require estimates of these parameters calculated from a sample 
taken from the population. We label these estimates a and b respectively. If 

Figure 9.4 A scatter plot of haemoglobin and age in 20 women with the corresponding 
fi tted regression line
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we had estimates for a and b then, for any subject i with value xi, we could 
predict their yi by Yi = a + bxi. Clearly, we would like to choose a and b so 
that yi and Yi are close and hence make our prediction error as small as pos-
sible. This can be done by choosing a and b to minimise the sum Σ(yi − Yi)2.
This leads us to call a and b the least-squares estimates of the population
parameters a and b. The model now becomes yi = a + bxi + ei. The ei are the 
error terms and are usually assumed to be Normal and to have an average 
value of zero. They are the amount that the observed value differs from that 
predicted by the model, and represent the variation not explained by fi tting 
the straight line to the data.

All sample estimates like b have an inherent variability, estimated by the 
SE(b). To calculate the degrees of freedom associated with the standard 
error, given n independent pairs of observations, two degrees of freedom are 
removed for the two parameters a and b that have been estimated; thus 
df = n − 2.

Tests of signifi cance and confi dence intervals

To test the hypothesis that there is no association between Hb and age, we 
compare t = b/SE(b) with a t-statistic with df = n − 2.

Example: Linear regression – Hb and age

From Table 9.1, we obtained the following result for the relationship 
between Hb and age: b = 0.134 g/dl/year, SE(b) = 0.017 and df = 18.

The interpretation of b is that we expect Hb to increase by 0.134 g/dl 
for every year of age. The corresponding test for signifi cance is given 
by calculating t = 0.134/0.017 = 7.84. Use of Table T3 with df = 18 gives 
p < 0.001.

A 95% CI for b with n − 2 df is given by

b t SE b b t SE bn n− × ( ) + × ( )− −2 2,0.05 ,0.05to .

From Table T3 with df = 18 and a 5% signifi cance value we obtain 
t18,0.05 = 2.101. Thus the 95% CI for b is given by

0 134 2 101 0 017. . .− × ×to 0.134 + 2.101 0.017,

or 0.10 to 0.17 g/dl/year.

Assumptions underlying the test of signifi cance

 (i) The relationship is approximately linear.
This is most easily verifi ed by plotting yi against xi as shown in Figure 

9.4. A further plot that can be useful is to plot the residuals ei = yi − Yi,



 

that is the observed y minus the predicted y, denoted Yi against xi. These 
are the sample estimates of the error terms ei defi ned earlier. If there is 
any discernible relationship between the residuals ei and xi, then it is 
likely that the relationship between yi and xi is not linear.

Example: Residuals – Hb and age

The residuals remaining, after fi tting age to Hb, are plotted against age, 
the independent variable, in Figure 9.5. There is no discernible correlation 
remaining, so we conclude that the linear regression provides an adequate 
model with which to describe the data. If the graph had indicated a cor-
relation it would suggest that perhaps some other variable may also be 
infl uencing Hb levels in addition to age, or perhaps that the relationship 
is not linear.

Figure 9.5 A scatter plot of residuals from linear regression against age

 (ii) The prediction error is unrelated to the predicted value.
It sometimes happens that if a small x is predicting a small y the 

residual is much smaller than when a large x is predicting a large y. To 
examine if this is the case, plot the residuals ei against the fi tted values 
Yi. If the residuals appear to get larger with increasing values of Yi, then 
the assumption that the prediction error is unrelated to the predicted 
value clearly cannot hold. If this is the case, then one may attempt to 
remedy the situation by using a transformation of the y variable, perhaps 
the logarithm of y, and then repeat both the calculation of the regression 
line and the plots.
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 (iii) The residuals about the fi tted line are Normally distributed.
This does not imply that the yi’s themselves must be Normally 

distributed, or even that they must be continuous variables. Thus a 
simple rating scale variable may take only values such as 0, 1, 2, 3, 
but when related to some x variable by means of linear regression 
may give residuals about that line that are Normally distributed. One 
method of verifying Normality is to plot the histogram of the 
residuals, with the best-fi t Normal distribution superimposed on it. 
An example of a best-fi t Normal curve is given in Figure 5.4. A more 
effi cient way of examining the results is to plot the residuals against 
their ordered Normal scores or Normal ordinates, as described in 
Section 9.9, in which deviations from linearity indicate lack of 
Normality.

Example: Residuals – Hb and age

The plot of the Hb residuals against the fi tted values is shown in Figure 
9.6. There is some evidence in this plot that the scatter of the residuals 
is actually decreasing with increasing Hb. This would suggest that age is 
not the only variable to determine Hb levels. Note that in the case of only 
one independent variable x (we discuss the case of several independent 
variables later), Figures 9.5 and 9.6 are essentially the same.

Figure 9.6 A scatter plot of residuals from linear regression against fi tted values



 
 (iv) The residuals are independent of each other.

In the case where we have single measurements on separate indivi-
duals, then there is no problem with independence as there is no reason 
to suppose that measurements made on one individual are likely to 
affect a different individual. There are two situations in which the 
assumption of independence might be violated: (1) if the observations 
are ordered in time, or (2) if different numbers of observations are 
made on some individuals, but all the observations are treated equally. 
In this latter case the study size is regarded (incorrectly) as the number 
of data points within the regression rather than the number of individu-
als providing data.

Example: Normal scores – Hb and age

A scatter plot of the ordered Normal scores obtained after a linear regres-
sion of Hb on age is shown in Figure 9.7. It can be seen that the data 
plausibly lie along a straight line and are therefore approximately Nor-
mally distributed. However, there is a possibility that the residual corre-
sponding to subject 7 is rather too low to be considered part of the same 
sample. Perhaps this point should be investigated further, but its presence 
does not affect the test of signifi cance unduly.

Figure 9.7 A scatter plot of residuals from the linear regression of Hb on age against 
their ordered Normal scores
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Example from the literature: Non-random residuals – 
patients with AIDS

Figure 9.8(a) shows the monthly number of acquired immune defi ciency 
syndrome (AIDS) cases identifi ed in the UK from January 1983 to Decem-
ber 1986, with the best-fi t straight line of cases on time (Tillett et al, 1988). 
The number of cases clearly increased substantially over the period. Figure 
9.8(b) is a plot of the residuals from this best-fi t line against time and it 
can be seen that one positive residual tends to be followed by another 
positive one and a negative residual tends to be followed by another nega-
tive one (in contrast with Figure 9.5 where the points appear to be ran-
domly scattered). The residuals are not random and this suggests the 
model is not appropriate for the data. In fact, Figure 9.8(a) shows this to 
be the case in the fi rst months and also towards the close of the study 
period. The non-random residuals also lead to an underestimate of the 
standard error of the slope, and so tests of signifi cance are not valid.

Example from the literature: Non-independent observations – 
white-matter water content and longitudinal relaxation time

Figure 9.9 shows the relationship between the percentage white-matter 
water content and longitudinal relaxation time, T1, from a study by Bell 
et al (1987). The authors refer to 19 patients in the study, and yet there 
are 30 points on the graph, so some of the patients must have had at least 
two observations. The regression equation is not estimated correctly in 
these circumstances, if all 30 observation pairs are included in the calcula-
tions of a and b in the manner described in Section 9.7.

Suppose one conducted a survey of Hb and age, making one observation 
per individual. Suppose further there was one elderly woman with a high Hb 
level, but the rest of the data showed little relationship between Hb and age. 
On the spurious grounds that this relationship is ‘interesting’, a clinician 
could recall this woman fi ve times for blood tests, to produce fi ve extra points 
in the top right-hand section of the graph. These would then generate an 
artifi cially strong relationship which would then appear to be (falsely) statisti-
cally signifi cant.

One procedure to adopt for multiple measurements is to take an average 
for each individual and treat each average as single observation. This, at least, 
ensures that the observations are independent. The variances of the observa-
tions may vary, but this is usually less of a problem than lack of independence 
and can be allowed using a weighted analysis.



 

Do the assumptions matter?

The art in statistics occurs when deciding how far the assumptions can be 
stretched without providing a seriously misleading summary and when the 
procedure should be abandoned altogether and other methods tried. In general, 

Figure 9.8 (a) A scatter plot of monthly number of AIDS cases in the UK from January 
1983 to December 1986 against time, and (b) the residuals from linear regression against 
time (Tillett et al, 1988)
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lack of Normality of the residuals is unlikely to affect seriously the estimates 
of a regression equation, although it may affect the standard errors and the 
size of the p-value. Similarly, a lack of constant variance of the residuals is 
unlikely to seriously affect the estimates, but again will have some infl uence 
on the fi nal p-value. In either case the advice would be to proceed, but with 
caution, particularly if the p-value is close to some critical value such as 0.05.

The lack of linearity is more serious, and would suggest either a transformation 
of y before fi tting the regression equation on x, or a model involving quadratic 
(squared) or higher terms of x using multiple regression (see Section 9.5).

Lack of independence of the residuals can also be serious. If the data form 
a time sequence, or if the data involve repeated measures on individuals, a 
correct analysis may be diffi cult and expert advice should be sought.

Regression and prediction

Figure 9.9 Percentage of water in the cortex and longitudinal relaxation time T1 (reprinted 
from The Lancet Vol i, Bell et al, Brain water measured by magnetic resonance imaging. 
Correlation with direct estimation and changes after mannitol and dexamethasone, pp. 
66–69, copyright © 1987, by permission of Elsevier)

Example from the literature: Prediction – running speed and 
pulse rate

In a study of 98 half-marathon runners, Campbell (1985) showed that one 
was able to predict the running speed of an athlete from his resting pulse 
rate (RPR) measured in beats/min by means of the regression model

Finishing time = 71+ 0.35 × RPR

Here a = 71 and b = 0.35, that is, for every 1 beat/min increase in RPR the 
fi nishing time in the half marathon increased by 0.35 min. This predicts a 
runner with RPR = 60 beat/min will have a fi nishing time of 92 min.



 

In these situations it is important to be aware that the prediction equation 
is valid only within the range of the independent variable from which it 
was derived. In the above example, the range of resting pulse rates in 
the sample was 40 to 94 beats/min. It would be unwise to use the derived 
equation to predict a running speed of a runner whose resting pulse was 
110 beats/min.

9.4 Comparison of assumptions between correlation 
and regression
The tests of signifi cance for a correlation coeffi cient and a regression coeffi -
cient yield identical t-statistics and p-values for a particular data set.

It is one of the nice coincidences in statistics that two completely different 
sets of assumptions lead to the same test of signifi cance. This would seem 
logical since one would not expect to have a signifi cant correlation in the 
absence of a signifi cant regression effect. Unfortunately this has often led 
to confusion between correlation and regression. The major difference 
in assumptions is that in regression there is no stipulation about the dis-
tribution of the independent variable x. It is often the case that the x’s
are determined by the experimenter. In an anaemia survey one might 
choose fi xed numbers of women in specifi ed age groups; in a laboratory 
survey one might be interested in the responses of patients to fi xed levels 
of a drug chosen by the experimenter. Moreover, choosing fi xed values 
for the x’s violates the assumption underlying the correlation coeffi cient, 
namely that the x’s (as well as the y’s) have a Normal distribution. 

Example: Selecting extreme observations – Hb and PCV

Selecting only the six women with a PCV of 35% and less, and the three 
women with 50% and more, in Table 9.1, the correlation coeffi cient 
between Hb and PCV becomes r = 0.91 as compared with 0.67 for the full 
data set. Thus selecting only women whose values are at the extreme of 
the x range can increase the apparent correlation coeffi cient.

In contrast it is perfectly valid in regression problems to have x variables that 
can take only two values (say) 0 and 1. These are clearly very far from being 
Normally distributed. It is worth noting that the test of signifi cance of a 
regression coeffi cient when x is a binary 0/1 variable is equivalent to the t-test
for the difference between two means. One mean is the mean value of y
for those subjects with x = 0 and the other the mean value of y for those 
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with x = 1. This result is useful because computer packages that can carry out 
regression can also be used to do t-tests.

9.5 Multiple regression
The multiple regression equation

Life is rarely simple, and outcome variables in medical research are usually 
affected by a multitude of factors. Fortunately the simple linear regression 
situation with one independent variable is easily extended to multiple regres-
sion. In that case the corresponding model is

y x xk k= + + + +α β β ε1 1 . . .

where x1 is the fi rst independent variable, x2 is the second, and so on up to 
the kth independent variable xk.

The term a is the intercept or constant term. It is the value of y when all 
the independent variables are zero. The regression coeffi cients b1,  .  .  .  , bk are 
again estimated by minimising the sum of the squares of the differences from 
the observed and predicted outcome variables, y and Y. Although the vari-
ables x1,  .  .  .  , xk are termed the independent variables, it should be noted that 
this is a misnomer since they need not be independent of one another. 
Although it is not essential that investigators understand the computational 
details of multiple regression, it is such a commonly used technique that they 
will need to be able to understand both computer output from a multiple 
regression calculation and read papers which use the results of multiple 
regression.

Uses of multiple regression

 (i) To look for relationships between continuous variables, allowing for a 
third variable.

In the examples above we found a signifi cant correlation between Hb 
and PCV, and a signifi cant regression between Hb and age. This stimu-
lates us to ask: Is the relationship between Hb and PCV only apparent 
because they both increase with age? In other words: Does age act as a 
confounding variable or covariate?

Example: Multiple regression – infl uence of age on the relation 
between Hb and PCV

Suppose the variable of major interest is in Hb (our y), then edited output 
from a multiple regression program of two independent variables PCV 
and age is given in Table 9.2.

The constant 5.24 is the estimated value of a, the intercept, of the equa-
tion. It is the Hb level estimated for someone with PCV and age of zero 



 

(ii) To adjust for differences in confounding factors between groups.

and, as is often the case, has no real interpretation since such patients are 
rare! However, it is usually produced by multiple regression programs and 
is needed in the prediction equation. PCV and Age are the two indepen-
dent variables and the regression coeffi cients are the estimates of the b’s
in the regression equation. We therefore write

Predicted Hb = 5.24 + 0.097 (PCV) + 0.110 (Age).

The interpretation of the regression coeffi cient associated with PCV is 
that for a given age, Hb increases by 0.097 g/dl for every unit increase in 
PCV. Note that this is less than the value 0.134 calculated earlier when 
age was not taken into account in the relationship. For a given value of 
PCV, Hb increases by 0.110 g/dl for every year of age.

Every parameter estimate has associated with it a standard error. The 
corresponding t-value is the regression coeffi cient estimate, b, divided 
by its SE and the df are given by the number of observations minus the 
number of estimated parameters – here a, bPCV and bAge. In this case, 
df = 20 − 3 = 17. From these we can derive the p-value by use of Table T3. 
These are given in Table 9.2. The p-values correspond to the probability 
of observing that particular regression coeffi cient, or one more extreme, 
on the null hypothesis assumption that the true regression coeffi cient is 
in fact zero. Since the regression coeffi cient associated with PCV is still 
highly signifi cant, the conclusion is that Hb and PCV are related even 
when age is taken into account.

Example: Haemoglobin and menopausal status

Suppose an investigator wished to test whether, on average, women of 
Table 9.1 who have experienced the menopause, have a different Hb level 
than women who have not. The mean and standard deviation of Hb for 
pre-menopausal women are 12.29 and 1.57 g/dl, whereas those for post-
menopausal women are 16.36 and 0.63 respectively.
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Table 9.2 Output obtained from a multiple regression of the dependent variable Hb on 
PCV and age

Variable Regression coeffi cient Estimate SE t p-value

Constant a 5.24 1.21
PCV bPCV 0.097 0.033 2.98 0.0085
Age bAge 0.110 0.016 6.74 0.0001
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A two independent groups t-test (as described in Chapter 8) yields a 
difference between the pre- and post-menopausal women of −4.07 g/dl 
(t = 7.3, df = 18, p < 0.001), which is very highly signifi cant. However, 
women who have experienced the menopause clearly will be older than 
women who have not. If there were a steady rise in Hb with age this might 
account for the difference observed and not the menopausal status itself.

However, menopausal status can be added to a multiple regression, 
which includes age, by use of a dummy variable. Such a variable takes the 
value 1 if the woman is post-menopausal and 0 if she is not. The output 
from a multiple regression program is given in Table 9.3.

Note that the size of the coeffi cient associated with age has reduced 
from the 0.110 of Table 9.2. This is because the probability of being meno-
pausal is age related, and age and menopausal status are being fi tted 
simultaneously. The interpretation of the coeffi cient associated with the 
variable menopause is that, allowing for age, women who are post-
 menopausal have a Hb level 1.88 g/dl higher than women who are not.

However, the corresponding 95% confi dence interval for bMenopause with 
df = 17 is

1.884 − t17,0.05 × 1.032 to 1.884 + t17,0.05 × 1.032

or −0.29 to 4.06. This interval includes zero, and so the conclusion made 
previously that there was a difference between pre- and post-menopausal 
women is largely discounted. It is the relative ages of the women in the 
two groups that accounts for most of the difference in Hb levels.

Nevertheless with a larger study an effect of the menopause, indepen-
dent of age, might have been demonstrated. In which case the scatter plot 
of Hb against age although linear within each menopausal group will 
‘jump’ to a higher level around the usual age of menopause – say 45 to 55 
years.

Note that these are not the best data to answer the question: ‘Do post-
menopausal women have a higher Hb level than pre-menopausal women?’. 
For a cross-sectional study it would be better to collect data from women 
who are immediately pre- or post-menopausal. Better still would be a 
longitudinal study which measured Hb levels in women before and after 
their menopause.

Table 9.3 Output obtained from a multiple regression of Hb on age and menopausal 
status

Variable Regression coeffi cient Estimate SE t p-value

Constant a 9.74
Age bAge 0.081 0.033 2.41 0.028
Menopause bMenopause 1.884 1.032 1.82 0.086



 

9.6 Logistic regression
One independent variable

In linear regression the dependent variable is continuous, but in logistic 
regression (sometimes known as binary logistic regression) the dependent 
variable is binary; that is it can only take a value of one of two categories 
and these are coded 0 and 1. Logistic regression is used to predict binary 
outcomes such as whether a patient has (code 1) or does not have (code 0) 
a disease in the presence of a particular diagnostic feature. Another applica-
tion is to examine whether the chance of cure (success) in patients with, 
for example, a particular type of cancer depends on the stage of their 
disease (risk factor). The model needs to be described with care. It is 
written in terms of the expected value of a positive result (success) for 
the outcome variable and assumes that the expected (or population) pro-
bability of a positive result for a subject with risk factor x is p. Then 
the logistic model is

log .
π

π
α β

1−
⎛
⎝

⎞
⎠ = + x

The values of the regression coeffi cients a and b are chosen as the ones 
that give expected proportions that are closest (in a particular mathematical 
sense) to the observed proportions, usually using a technique known as 
maximum likelihood.

The above equation may be compared with that for linear regression in 
Section 9.3. The right-hand side of the logistic equation has the same form, 
but y on the left-hand side is replaced not by p, but by the so-called logit of 
p. The essential reason for this is that p itself can take only values between 
0 and 1, whereas the logit which is log[p/(1 − p)] may range from −∞ to +∞,
as can the continuous variable y. Essentially this transformation ensures that 
the probabilities, which we want to estimate, lie between 0 and 1.

The logit transform has the useful property that if an independent variable, 
x, in the model is binary with values 0 or 1, and has associated regression 
coeffi cient b, then exp(b) is the odds ratio, OR, of someone with x = 1 having 
a positive result.

Example: Logistic regression – anaemia in women

If in Table 9.1 we classifi ed women into ‘anaemic’ or ‘non-anaemic’ 
groups by defi ning those with Hb less than 12.0 g/dl as anaemic, then 
this implies that subjects 1, 2, 6 and 7 are categorised as anaemic using 
this defi nition. Suppose we were interested in whether women aged 
less than 30 were at particular risk of anaemia. We defi ne a new 
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The multiple logistic regression equation

In the same way that multiple regression is an extension of linear regression, 
we can extend logistic regression to multiple logistic regression with more 
than one independent variable. We can also extend it to the case where some 
independent variables are categorical and some are continuous. Thus if there 
are k risk variables x1, x2,  .  .  .  , xk, then the model is:

log . . . .
π

π
α β β

1
1 1−

⎛
⎝⎜

⎞
⎠⎟ = + + +x xk k

If the independent variables are categorical, as is ‘Age < 30’ in the example 
above, we can tabulate the data by all levels of the covariables. Thus we 
tabulate the women by whether or not they are younger than 30 years. The 
model then implies that all women in a particular ‘age’ cell of the table will 
have the same probability of being anaemic, say pi, and this probability may 
differ from cell to cell. The pi can be estimated by pi which is the proportion 
of women who are anaemic in that cell.

(independent) variable ‘age-30’ to take the value of 1 if a woman is less 
than 30, and 0 otherwise.

A logistic regression with ‘anaemia’ as the outcome variable gives the 
output summarised in Table 9.4, from which the OR is estimated by 
exp(1.4663) = 4.33. We can relate this to the 2 × 2 table of Table 9.5 from 
which the OR = (2 × 13)/(2 × 3) = 4.33.

The p-values obtained are approximately equal to those from the con-
ventional χ2 test for 2 × 2 tables, especially when the numbers in the table 
are large. An estimated 95% CI for the OR is

exp . . .b SE b SE− ×( ) + ×( )1 96 1 96to exp

For example, from Table 9.4, the OR for ‘anaemia’ for a woman aged under 
30 years is 4.3, with 95% CI of 0.1 to 169.9. This CI is very wide, refl ecting 
the paucity of data and hence the lack of statistical signifi cance.

Table 9.4 Output obtained from a logistic regression analysis with dependent variable 
‘Anaemia’, independent binary variable ‘Age < 30’ (date of Table 9.1)

Variable Regression Estimate SE Wald* df p-value OR = exp(b30)
 coeffi cient      

Constant a −1.8718 0.7596
Age < 30 b30 1.4663 1.1875 1.5246 1 0.2169 4.333

*‘Wald’ refers to a statistical test based on the ratio of the estimate (for example, b the estimate of 
b) to its standard error.



 

If the independent variables are continuous, then such a table cannot be 
sensibly drawn up. However, if one were to do so, there would be very many 
cells. In fact possibly many more cells than there are women! In which case, 
many cells would be likely to be empty and many contain only a single indi-
vidual. Thus the resulting proportions responding in each cell, would almost 
all be zero or one.

Nevertheless, it is perfectly possible to get valid estimates of the parame-
ters of a logistic model in this extreme(the continuous variable) case. In 
which case, if an independent variable x is continuous and b is the associated 
regression coeffi cient, then exp(b) is the increase in odds associated with a 
unit increase in x.

Table 9.5 Relationship between anaemia and age in 20 women (data of Table 9.1)

Age < 30 x ‘Anaemic’ ‘Non-anaemic’ Total Proportion anaemic

Yes 1 2  3  5 0.40
No 0 2 13 15 0.13
Total  4 16 20

Example: Logistic regression – anaemia and age

For example, if we use age as a continuous variable in the above example 
we obtain Table 9.6.

We can rewrite the fi tted multiple logistic regression equation as:

p
a b x b x

a b x b x
k k

k k

= + + +( )
+ + + +( )
exp ...

exp ...
.1 1

1 11

Here p is the estimated probability of anaemia for a woman with 
covariates or risk factors x1,  .  .  .  , xk; a, b1,  .  .  .  , bk are the estimates of 
a, b1,  .  .  .  , bk.

Table 9.6 Output obtained from a logistic regression analysis with dependent variable 
‘Anaemia’, independent continuous variable ‘Age’ (date of Table 9.1)

Variable Regression Estimate SE Wald df p-value OR = exp(b30)
 coeffi cient      

Constant a  5.6219 3.6223
Age bAge −0.2077 0.1223 2.8837 1 0.0895 0.8125
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Use of logistic regression in case–control studies

Logistic regression is particularly useful in the analysis of case–control studies. 
It can be shown that if the case or control status (1 or 0) is made the depen-
dent variable in a logistic regression then the model will provide valid esti-
mates of the odds ratios associated with risk factors. These odds ratios will 
give estimates of relative risks (RR) provided the incidence of the disease is 
reasonably low, say below 20% (see also Section 12.7).

Example: Logistic regression – anaemia and age

For the single continuous covariate ‘Age’ the above model for pAge, the 
corresponding proportion with ‘Anaemia’, is

pAge
Age

Age
= − ×( )

+ − ×( )[ ]
exp . .

exp . .
5 6219 0 2077

1 5 6219 0 2077

For example, a woman aged 30 has an estimated probability p30 =
exp(5.6219 − 0.2077 × 30)/[1 + exp(5.6219 − 0.2077 × 30)] = 0.35 of being 
anaemic. For a woman age 31 the corresponding OR = exp(−0.2077) = 0.81 
times less likely to be ‘anaemic’ than a woman age 30. This in turn implies 
that she is 0.81 times 0.81 = 0.812 = 0.66 times less likely to be ‘anaemic’ than 
a woman two years younger. Thus exp(bAge) is the change (decrease) in the 
odds ratio of becoming anaemic for every increase of one year of age.

Example from the literature: Logistic regression – risk factors for 
chlamydial infection

Oakeshott et al (1998) describe a cross-sectional study in patients attend-
ing a general practice of the risk factors associated with Chlamydia
trachomatis infection detected following a cervical smear. The outcome 
variable was binary (infection, no infection) and the potential risk factors 
investigated were age under 25, race and number of sexual partners. Each 
of these potential associations with chlamydial infection was tested sepa-
rately using a χ2 test and found to be statistically signifi cant.

A logistic regression analysis showed, for example, that being aged 
under 25 carried a risk of infection three times that of the over-25s and 
that for a particular racial group the risk increased by a factor of 2. As a 
consequence, someone in a particular racial group who is also aged under 
25 is then expected to have a risk which is 2 × 3 = 6 times that of someone 
without those risk factors.

The overall prevalence of chlamydial infection was quite low, so the 
estimated OR can be interpreted as the Relative Risk.



 

Consequences of the logistic model

A question that remains is: Is there any interaction between the input vari-
ables? For example, if a patient tested has more than one risk factor, such as 
being ‘Age < 25’ and in the ‘Racial group’ of highest risk then added together 
these may give more risk than would be predicted from each risk factor 
separately?

However, since the logistic model is described in terms of logarithms, what 
is additive on a logarithmic scale is multiplicative on the linear scale. To 
quantify the potential interaction between two binary covariates, say x1 and 
x2, the multiple logistic regression model is extended by adding a third covari-
ate x3 = x1 × x2. The magnitude of the associated regression coeffi cient then 
indicates whether the two factors interact together in a synergistic (either 
more or less than multiplicative) way or are essentially independent of each 
other, in which case the associated estimated regression coeffi cient will be 
close to zero.

Example: Interaction – chlamydial infection by young age and 
ethnic group

For the study of Oakeshott et al (1998) someone in a particular racial 
group who is also aged under 25 is expected to have a risk which 6 times 
that of someone without either of these risk factors. Thus if ‘Race’ takes 
the value 1 for someone who is of a particular race and 0 otherwise, and 
‘Age < 25’ takes the value 1 for someone aged under 25 and 0 otherwise, 
then to investigate interaction between these variables, a new variable 
‘Age/Race’, equal to ‘Race’ multiplied by ‘Age < 25’, must be included in 
the logistic model.

Model checking

An important question is whether the logistic model describes the data well. 
If the logistic model is obtained from grouped data, then there is no problem 
comparing the observed proportions in the groups and those predicted by 
the model.

There are a number of ways the model may fail to describe the data well 
and these include:

1. lack of an important covariate
2. outlying observations
3. ‘extra-binomial’ variation.
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The fi rst problem can be investigated by trying all available covariates, and 
the possible interactions between them. Provided the absent covariate is not 
a confounder, then inference about the particular covariate of interest is 
usually not affected by its absence. Suppose the proportion of people aged 
under 25 in the study by Oakeshott et al (1998) was the same in each racial 
group. For example the proportion of (say) Welsh people aged under 25 was 
the same as the proportion of (say) English people aged under 25. Then the 
estimated risk of chlamydial infection for people aged under 25 will not be 
affected by whether race is or is not included in the model.

Outlying observations can be diffi cult to check when the outcome variable 
is binary. However, some statistical packages do provide standardised 
residuals; that is, residuals divided by their estimated standard errors. 
These values can be plotted against values of independent variables to 
examine patterns in the data. It is important also to look for infl uential 
observations, perhaps a subgroup of subjects that if deleted from the analysis 
would result in a substantial change to the values of regression coeffi cient 
estimates.

Extra-binomial variation can occur when the data are not strictly indepen-
dent; for example, if the data comprise repeated outcome measures from 
the same individuals rather than a single outcome from each individual, 
or if patients are grouped for treatment which may be the case in an inter-
vention trial randomised by clusters rather than for each individual (see 
Section 13.5). In such cases, although the estimates of the regression 
coeffi cients are not unduly affected, the corresponding standard errors are 
usually underestimated. This then leads to a Type I error rate higher than the 
expected (say 5%).

9.7 Correlation is not causation
One of the most common errors in the medical literature is to assume that 
simply because two variables are correlated, therefore one causes the 
other. Amusing examples include the positive correlation between the 
mortality rate in Victorian England and the number of Church of England 
marriages, and the negative correlation between monthly deaths from 
ischaemic heart disease and monthly ice-cream sales. In each case here, 
the fallacy is obvious because all the variables are time-related. In the 
former example, both the mortality rate and the number of Church of England 
marriages went down during the 19th century, in the latter example, deaths 
from ischaemic heart disease are higher in winter when ice-cream sales 
are at their lowest. However, it is always worth trying to think of other 
variables, confounding factors, which may be related to both of the vari-
ables under study. Further details on assessing causation are given in 
Section 12.9.



 

9.8 Points when reading the literature
1. When a correlation coeffi cient is calculated, is the relationship likely to be 

linear?
2. Are the variables likely to be Normally distributed?
3. Is a plot of the data in the paper? (This is a common omission.)
4. If a signifi cant correlation is obtained and the causation inferred, could 

there be a third factor, not measured, which is jointly correlated with the 
other two, and so accounts for their association?

5. Remember correlation does not necessarily imply causation.
6. If a scatter plot is given to support a linear regression, is the variability of 

the points about the line roughly the same over the range of the indepen-
dent variable? If not, then perhaps some transformation of the variables 
is necessary before computing the regression line.

7. If predictions are given, are any made outside the range of the observed 
values of the independent variable?

8. Sometimes logistic regression is carried out when a dependent variable is 
dichotomised, such as the example of Tables 9.4 and 9.5 when Hb level 
was dichotomised to ‘Anaemic’ or ‘Non-anaemic’. It is important that the 
cut point is not derived by direct examination of the data for example to 
fi nd a ‘gap’ in the data which maximises the discrimination between the 
selected groups as this can lead to biased results. It is best if there are 
a priori grounds for choosing a particular cut point.

9.9 Technical details
Correlation coeffi cient

Given a set of pairs of observations (x1, y1), (x2, y2),  .  .  .  , (xn, yn) the Pearson 
correlation coeffi cient is given by

r
y y x x

y y x x

i i
i

n

i i
i

n

i

n
=

−( ) −( )

−( ) −( )
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==
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To test whether this is signifi cantly different from zero, calculate

t
r

r n
=

−( ) −( )1 22
.

This is compared with the t-distribution of Table T3 with df = n − 2.
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Spearman’s rank correlation is calculated from Pearson’s correlation coeffi -
cient on the ranks of the data. An alternative, and easier to calculate, formula is

r
d

n n
i

Spearman ,= −
−

∑1
6 2

3

where di is the difference in ranks for the ith individual. In the above example, 
the estimated rSpearman = 1 precisely, as the ranks for FEV1 and height for each 
patient are the same and so all di = 0.

Linear regression

Given a set of pairs of observations (x1, y1), (x2, y2),  .  .  .  , (xn, yn) the regression 
coeffi cient of y given x is

b
x x y y

x x

i i
i

n

i
i

n=
−( ) −( )

−( )
=

=

∑

∑
1

2

1

.

The intercept is estimated by a = y − bx.

Worked example: Correlation coeffi cient

The results of forced expiratory volume (FEV1) measurements and height 
in 5 patients with asthma are given in Table 9.7.

Thus, n = 5, y = 1.86, x = 168.6, Σ(y − y)2 = Σy2 − ny2 = 0.572, 
Σ(x − x)2 = Σx2 − nx2 = 149.2, Σ(x − x)(y − y) = Σxy − nx y = 8.32 and so

r =
×

= =8 32

149 2 0 572

8 32
9 2381

0 9006
.

. .

.
.

. .

Thus SE( ) .r = −( )1 0 9006 32 = 0.2509 and t = 0.9006/0.2509 = 3.59.
From Table T3, with df = 5 − 2 = 3, t3,0.03 = 3.896, t3,0.04 = 3.482, hence 

0.03 < p < 0.04; computer output gives a p value of 0.037.

Table 9.7 Relationship beween FEV1 and height in fi ve patients with asthma

 FEV1 (litres) Height (cm) xy y2 x2

y x

 1.5  160  240.0  2.25  25 600
 1.6  165  264.0  2.56  27 225
 1.7  170  289.0  2.89  28 900
 2.1  173  363.3  4.41  29 929
 2.4  175  420.0  5.76  30 625
Totals 9.3  843 1576.3 17.87 142 279
Means 1.86 168.6



 

To test whether b is signifi cantly different from zero, calculate

E y y b x x E n x xxy xx= −( ) − −( ) = −( ) −( )∑∑ ∑2 2 2 22, ,

and hence

SE b E Exy xx( ) = .

Then compare t = b/SE(b) with the distribution of Table T3 with 
df = n − 2.

A 95% CI for the slope is given by

b t SE b b t SE bn n− × ( ) + × ( )− −2 0 05 2 0 05, ,to . . .

Worked example: Linear regression

Using the data of Table 9.7 for a linear regression of FEV1 on age, 
b = 8.32/149.2 = 0.0558 and a = y − bx = 1.86 − (0.0558 × 168.6) = −7.5479.
Thus the regression line is estimated by FEV1 = −7.55 + 0.056 × Height.

The formal test of signifi cance of the regression coeffi cient requires 
Exy = 0.1074, Exx = 447.6 and hence SE(b) = (0.1074/447.6)1/2 = 0.0155. From 
which t = 0.056/0.0155 = 3.59. We compare this with a t distribution with 
df = 5 − 2 = 3. Use of Table T3 gives the p-value as approximately 0.04 
(more exactly 0.037) as we had in the correlation coeffi cient example 
above.

The 95% CI for the slope is given by 0.056 − 3.182 × 0.0155 to 0.056 +
3.182 × 0.0155. Finally, that is, 0.007 to 0.105 litres/cm.

Normal probability plots

Given a sample y1, y2,  .  .  .  , yn, we wish to see if they follow a Normal distribu-
tion. To do this:

1. Rank the data from smallest to largest, here labelled:

y y y n1 2( ) ( ) ( ), , . . . ,

 where y(1) represents the smallest observation and y(n) the largest.

2. Calculate the corresponding cumulative probability scores (i − ½)/n, for 
each i = 1, 2,  .  .  .  , n.

3. From Table T5 obtain the Normal ordinates zi, corresponding to the 
cumulative probability scores.

4. Plot the observed values yi on the y-axis against the Normal ordinates, zi,
on the x-axis. Departures from linearity will indicate a lack of Normality. 
An estimate of the median is provided by the value of yi corresponding to 
the zi of zero.
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Worked example: residual and normal ordinates

The residuals from the regression of FEV1 on height of Table 9.7 are 
given in Table 9.8 and we wish to check if these follow a Normal 
distribution.

To do this the residuals are ordered, their corresponding cumulative 
probability scores calculated and the Normal ordinates, zi determined 
from Table T5. Thus corresponding to the cumulative probabilities 0.1, 
z = −1.28, for probability 0.3, z = −0.52, and so on as given in the fi nal 
column of Table 9.8. These are plotted in Figure 9.10.

Table 9.8 Residuals for the linear regression of FEV1 and height in fi ve patients with 
asthma

FEV1 (litres) Height (cm) Predicted Residuals Ordered (i − ½)/5 zi

y x FEV1  residuals

1.5 160 1.42 0.08 −0.28 0.1 −1.28
1.6 165 1.70 −0.10 −0.10 0.3 −0.52
1.7 170 1.98 −0.28 −0.05 0.5 0.00
2.1 173 2.15 −0.05 0.08 0.7 0.52
2.4 175 2.26 0.14 0.14 0.9 1.28
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Figure 9.10 Plot of the residuals calculated from the regression of Table 9.7 against 
Normal ordinates. As this plot is approximately linear, we can see that there is no real 
evidence of a lack of Normality for these data



 

9.10 Exercises
1. A survey was conducted in 295 people asking about arthritic pain on a 

visual analogue scale (can be treated as continuous) in 295 people. Sex 
was coded 1 = male 0 = female. Medication was coded 1 = on medication 
0 = not on medication.

The output from a multiple linear regression computer program is 
shown in Table 9.8.

Table 9.8 Output from survey of 295 people
R-squared   = 0.0554
Adj R-squared = 0.0489

pain| Coef. Std. Err. t P>|t| [95% Conf. Interval]

+      

sex| -5.285991 3.294272 -1.60 0.110 -11.76952 A

medication| -9.489177 3.245583 B 0.004 -15.87688 -3.101475

_cons | 94.18235 5.853297 16.09 0.000 82.66236 105.7024

{adjusted r-squared=1-(1-r-squared)(N-1)/(N-k-1) where N is number 
of subjects and k is the number of predictors.}

 (i) Deduce the values of A and B.
 (ii)  Is the effect of medication signifi cant? What is the assumption under-

lying this test?
(iii) What is the expected value of the pain score in a woman not on 

medication?
 (iv)  What is the expected value of the pain score for a man on 

medication?
 (v) Is the model a good fi t to the data?

2. A survey was conducted and asked ‘do you consider your health to 
be poor?’ This was coded 1 for ‘yes’ and 0 for ‘no’. The effect of age 
(in decades) and sex on the outcome was examined using logistic 
regression.
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Logit estimates                  
      
ill | Coef. Std. Err. z P>|z| [95% Conf. Interval]

+     
sex |  .037236 .2510687  0.15 0.882  -.4548497 .5293217
age |  .3310879 .2454655 A 0.177  -.1500157 B
_cons | -.5440707 .4480324 -1.21 0.225 -1.422198 .3340567
      

      
ill | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

+     
sex | 1.037938 .2605938 0.15 0.882 .6345433 1.69778
age | C .3418064 1.35 0.177 .8606945 2.25284

 (i) Deduce the values of A B and C.
 (ii) Are either age or sex signifi cant predictors of outcome?
 (iii) Interpret the value of C.
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Summary

The major outcome variable in some clinical studies is the time measured 
from patient or subject entry into a study until a pre-specifi ed ‘critical event’ 
has occurred. These times often have a rather skewed distribution. However, 
a key feature of ‘survival-time’ data is the presence of ‘censored’ observa-
tions. Censored observations arise in subjects that are included in the study 
but for whom the critical event of interest has not yet been observed. 
We describe the Kaplan–Meier survival curve, the Logrank test for compar-
ing two groups, the use of the hazard ratio for data summary and the 
Cox proportional hazards regression model, which replaces linear regres-
sion when the continuous outcome data are survival times with censored 
observations.

10.1 Time to event data
The major outcome variable in some clinical trials is the time from randomi-
sation, and start of treatment, to a specifi ed critical event. The length of time 
from entry to the study to when the critical event occurs is called the survival 
time. Examples include patient survival time (time from diagnosis to death), 
the time a kidney graft remains patent, length of time that an indwelling 
cannula remains in situ, or the time a serious burn takes to heal. Even when 
the fi nal outcome is not actual survival time, the techniques employed with 
such data are conventionally termed ‘survival’ analysis methods.

Example from the literature: Trial endpoints – children 
with neuroblastoma

Pearson et al (2007) describe a randomised clinical trial in children with 
neuroblastoma in which two chemotherapy regimens are compared. In 
brief, the object of therapy following diagnosis is fi rst to reduce the tumour 
burden (to obtain a response); to maintain that response for as long as 
possible; then following any relapse to prolong survival. Key ‘survival type’ 
endpoints are therefore time from start of treatment to: response, progres-
sion and death; and duration of response as shown in Figure 10.1.

However a key feature of survival time studies is the distinction that 
needs to be made between calendar time and patient time-on-study that 
is illustrated in Figure 10.2. This shows a study including fi ve patients 
who enter the study at different calendar times. This is typically the situation 



 

in any clinical trial in which the potential patients are those presenting 
at a particular clinic over a period of time and not all on the same date. 
The progress of patients recruited to the trial is then monitored for a 
period as is described in the appropriate trial protocol. Also at some future 

Start of
Treatment Response Progression Death

Time to Response

Response Duration

Time to Progression

Survival

Study End

Figure 10.1 Endpoints or critical events relevant to a clinical trial in children with 
neuroblastoma
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Figure 10.2 ‘Calendar time’ when entering and leaving a study compared to ‘Patient 
time’ on the study
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date (calendar time) the trial will close and an analysis conducted. For a 
patient recruited late in the trial, this may mean that some of their endpoint 
observations will not be made. Thus for such a patient, in the example of 
Figure 10.1, at the date of analysis only time to response may be observed, 
in which case time to progression and survival time will both be censored 
with the same survival time value, and response duration will also be 
censored. The calendar time on which these censorings occur will be the 
same date.

At this analysis (calendar) time, the patients will now be viewed as in the 
lower panel of Figure 10.2, that is, time will be measured from the start of 
entry to the study, that is by patient (follow-up) time rather than calendar 
time.

Although survival time is a continuous variable one often cannot use 
the standard t-test of Chapter 8 for analysis as the distribution of survival 
times is unlikely to be Normal and it may not be possible to fi nd a transfor-
mation that will make it so. However, the major reason for the use of 
‘survival’ methods is not the shape of the distribution but the presence 
of ‘censored’ observations. Censored observations arise in patients that 
are included in a study but for whom the critical event of interest has not 
yet been observed. For example, although some of the patients recruited 
to a particular trial may have died and their survival time is calculable, others 
may still be alive. The time from randomisation to the last date the live 
patient was examined is known as the censored survival time. Thus in 
Figure 10.2, although two patients ‘Fail’, three are ‘Censored’. Here failure 
implies that the study endpoint has been reached (perhaps they have died), 
while of those censored, two were censored as the trial analysis was con-
ducted while they were still known to be alive (they had therefore not yet 
died), and one patient had been ‘Lost’. Essentially, ‘Lost’ means known 
to have lived for the period indicated, and then ceased to be followed by 
the study team for some reason. Perhaps the patient failed to return for 
scheduled follow-up visits.

Censored observations can arise in three ways:

    (i) The patient is known to be still alive when the trial analysis is carried 
out.

  (ii) Was known to be alive at some past follow-up, but the investigator has 
since lost trace of him or her.

(iii) Has died of some cause totally unrelated to the disease in question.

Clearly more survival time information would become available in situa-
tion (i) above if the analysis were delayed; possibly further time may be 
gained with (ii) if the patient was subsequently traced; while no further time 
is possible in situation (iii).



 

10.2 Kaplan–Meier survival curve
One method of analysis of survival data is to specify in advance a fi xed time-
point at which comparisons are to be made and then compare proportions 
of patients whose survival times exceed this time period. For example, one 
may compare the proportion of patients alive at 1 year in two treatment 
groups. However this ignores the individual survival times and can be very 
wasteful of the available information. Neither does it overcome the problem 
of observations censored at times less than 1 year from randomisation. 
However, techniques have been developed to deal with survival data that can 
take account of the information provided by censored observations. Such 
data can be displayed using a Kaplan–Meier (K-M) survival curve.

Example from the literature: No censored observations – duration of 
postoperative fever

Chant et al (1984) in a randomised trial including 108 adult patients under-
going appendicectomy compared two drugs, metronidazole and ampicil-
lin, which are used to alleviate postoperative wound infection. One of the 
major outcome variables was the length of the postoperative fever actually 
experienced by the patients as measured from the date of surgery to the 
date of resolution of fever.

This period was observed in all patients so there were no censored 
observations and so the fi ndings were summarised by use of the geometric 
mean number of days of fever in each group. The use of the geometric, 
rather than the arithmetic mean, implied that the logarithm of the fever 
duration has a more Normal-shaped distribution than the times them-
selves. The geometric mean in patients receiving ampicillin was 3.0 days, 
compared with 3.5 days for patients receiving metronidazole. This differ-
ence was statistically signifi cant (t = 2.45, df = 106, p-value = 0.014) sug-
gesting an advantage to ampicillin.

Example from the literature: Kaplan–Meier curves – ulcerative colitis

Hawthorne et al (1992) conducted a randomised trial in 67 patients with 
ulcerative colitis who had achieved a remission of at least 2 months when 
taking azathioprine. They were then randomised to either continue with 
azathioprine, or given a placebo.

The corresponding K-M survival curves of time from randomisation to 
recurrence of the disease are shown in Figure 10.3. The results revealed 
that continuing azathioprine treatment in ulcerative colitis was benefi cial 
if patients have achieved remission while taking the drug.
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If there are no censored observations, then the K-M survival curve for n patients 
starts at time 0 with a value of 1 (or 100% survival) then continues horizontally 
until the time the fi rst death occurs, it then drops by 1/n at this point. The curve 
then proceeds horizontally once more until the time of the second death when 
again it drops by 1/n. This process continues until the time of the last death, 
when the survival curve drops by the fi nal 1/n to take a value of 0 (0%). If two 
deaths happen to occur at the same time then the step down would be 2/n.

The K-M estimate of the survival curve when there are censored observa-
tions mimics this process but essentially ‘jumps’ over the ‘censored’ observa-
tions which then leads to steps down of unequal sizes. The precise method 
of calculating the K-M survival curve is summarised below.

Figure 10.3 Kaplan–Meier survival curves for time from randomisation to recurrence of 
ulcerative colitis in 67 patients who had achieved remission by initially taking azathio-
prine. From Hawthorne et al (1992). Randomised controlled trial of azathioprine with-
drawal in ulcerative colitis. British Medical Journal, 305, 20–22: reproduced by permission 
of the BMJ Publishing Group

Procedure for calculating a Kaplan–Meier survival curve

1. First, order (rank) the survival times from smallest to largest. If a cen-
sored observation and a time to death are equal, then the censored 
observation is assumed to follow the death.

2. An event is a death. A censored observation has no associated event.
3. Determine the number at risk, ni, as the number of patients alive imme-

diately before the event at time ti.
4. Calculate the probability of survival from ti−1 to ti as 1− di /ni. Note that 

we start at time zero with t0 = 0.
5. The cumulative survival probability, S(ti), is the probability of surviving 

from 0 up to ti. It is calculated as



 

6. S(ti) = (1 − di/ni) × (1 − di−1/ni−1) ×  .  .  .  × (1 − d1/n1).
7. A censored observation at time ti reduces the number at risk by one 

but does not change the cumulative survival probability at time ti since 
di = 0.

8. A plot of the cumulative survival probability S(ti) against ti, gives the 
K-M survival curve.

Worked example: K-M survival curve

The calculations for the K-M survival curve are easiest to explain by 
example as in Table 10.1. There we consider a group of 16 patients ran-
domised to a trial of two treatments A and B, where the outcome is sur-
vival time from start of treatment. Some patients are lost to follow-up 
while others have only been observed for short periods of time and so, in 
both cases, their observations are censored at the time of analysis.

For illustration of the K-M curve, we combine the data from both treat-
ment groups and their ordered (or ranked) survival times are given in 
Table 10.1, Column 2. These range from the shortest survival time of 21 
days to four patients still alive after 365 days on the trial and who therefore 
have censored survival times denoted 365+.

The resulting K-M curve is shown in Figure 10.4, from which it can be 
seen that the step sizes are unequal (caused by the censored values of 33+
and 100+, and the two deaths at 130 days). Further, the curve does not 
reach the time-axis as the longest survivors at 365 days are still alive.

On the K-M survival curve of Figure 10.4, the small spikes correspond to the 
censored observations. Above each spike, the number of patients censored 
at that time is given. In this example, all are marked ‘1’ except for the longest 
censored observation at 365+ days where there is a ‘3’. When there are a 
large number of patients and perhaps a large number of censored observa-
tions, the ‘spikes’ may clutter the K-M curve. In which case the numbers at 
risk, which are a selection of the ni of Table 10.1, are tabulated at convenient 
intervals beneath the K-M curves as illustrated.
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When comparing two or more survival curves, we usually assume that the 
mechanisms that result in censored observations occurring do not depend on 
the group concerned, that is, the censoring is ‘non-informative’ in that it tells 
us nothing relevant to the comparison of the groups. For example, in a ran-
domised clinical trial, it is assumed that patients are just as likely to be lost 
to follow-up in one treatment group as in another. If there are imbalances in 
such losses then this can lead to spurious differences in survival between 
groups and false conclusions being drawn by the analysis.
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Table 10.1 Illustration of calculations for the Kaplan–Meier survival curve and Logrank test in a clinical trial of 16 patients

   Kaplan–Meier Logrank test

Ordered Total Number of Probability Cumulative Treatment Number at Expected
 survival number events at of survival survival  risk in A number of
 time at risk time ti in ti−1, ti probability   events in A
i ti ni di 1 − di/ni   nAi eAi

 0 0 16 – 1 1 – 8 0

 1 21 16 1 0.938 0.938 A 8 0.500
 2 33+ 15 0 1 0.938 A 7 0
 3 42 14 1 0.929 0.871 B 6 0.429
 4 55 13 1 0.923 0.804 A 6 0.462
 5 69 12 1 0.917 0.737 A 5 0.417
 6 100+ 11 0 1 0.737 B 4 0
 7 130 10 2 0.800 0.590 A 4 0.800
 8 130     A
 9 210  8 1 0.875 0.516 B 2 0.250
10 250+  7 0   B  *
11 290+  6 0   A
12 310+  5 0   A
13 365+  4 0   B
14 365+     B
15 365+     B
16 365+     B

*The expected number of events is not be calculated for times beyond the last recorded event – here 210 days.



 

10.3 The Logrank test
To compare the survival times of two groups, the K-M survival curves for 
each are fi rst calculated and then formally compared using the Logrank test. 
The null hypothesis of no difference between groups can be expressed by 
stating that the median survival times of the two groups are equal. The 
appropriate calculations are summarised below. The curious name, Logrank, 
for the test arises because it is related to another statistical test that uses the 
logarithms of the ranks of the data.
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Figure 10.4 Kaplan–Meier survival curve for the 16 patients of Table 10.1
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Procedure for calculating the Logrank test comparing two groups A 
and B

Using the notation summarised in Table 10.1

1. The total number of events observed in groups A and B are OA and 
OB.

2. Under the null hypothesis, the expected number of events in the group 
receiving treatment A at time ti is

3. eAi = (dinAi)/ni.
4. The expected number of events should not be calculated beyond the 

last event (at time 210 days in this example).
5. The total number of events expected on A, assuming the null 

hypothesis of no difference between treatments, is EA = ΣeAi.
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6. The number expected on B is EB = Σdi − EA.
7. Calculate

χLogrank
2 A A

A

B B

B

= −( ) + −( )O E
E

O E
E

2 2

.

8. This has a c2 distribution with df = 1 as two groups are being 
compared.

Worked example: Logrank test

Table 10.1 illustrates the calculations of the Logrank test in which treat-
ment groups A and B are compared. This gives OA = 5, OB = 2, EA = 2.86 
and EB = 4.14. From which

χLogrank
2 = −( ) + −( ) =5 2 86

2 86
2 4 14

4 14
2 71

2 2.
.

.
.

. .

Using Table T4 with df = 1 gives p = 0.1 (more precise calculations give 
0.099) which suggests that we do not reject the null hypothesis.

10.4 The hazard ratio
We indicated earlier, that the median survival time may be a suitable summary 
for survival data as survival times often have rather skew distributions. 
However, there is an immediate problem if censored data are present. 
For example, if we were to ignore the censoring in the survival times of 
Table 10.1, we could calculate the median time, M = (130 + 210)/2 = 170 days. 
However, there are two censored values below this ‘median’ at 33+ and 100+
days, and these two observations have the potential to increase and may 
eventually both exceed the current median estimate of 170 days. In view of 
censored observations, the median is estimated by fi rst calculating the K-M 
survival curve, then from the mid-point of the survival axis (survival of 50%) 
moving horizontally until the curve is met, then dropping vertically to the 
time axis.

Worked example: Median ‘survival’ time – recurrence of 
ulcerative colitis

Following the above process for the Placebo group of Figure 10.3 gives a 
median time to recurrence of approximately 210 days. However, that for 
the azathioprine group cannot be estimated as the K-M curve has not 
passed beneath the 50% recurrence value.



 

The hazard ratio (HR) has been specifi cally developed for survival data, 
and is used as a measure of the relative survival experience of two groups.

Procedure for calculating the HR when comparing two groups

1. Accumulate the observed number of events in each group, OA and OB.
2. Under the hypothesis of no survival difference between the groups, cal-

culate the expected number of events in each group, EA and EB using the 
Logrank test.

3. The ratio OA/EA is the relative event rate in group A. Similarly OB/EB is 
the relative death rate in group B.

4. The HR is the ratio of these relative event rates, that is

HR
O E
O E

= A A

B B

.

When there is no difference between two groups, that is the null hypothesis 
is true, the value of HR = 1. It is important to note that for the HR the 
‘expected’ deaths in each group are calculated using the Logrank method as 
described previously. This method allows for the censoring which occurs in 
nearly all survival data. It has parallels with the relative risk, RR, of Chapter 
12 and has a similar interpretation. As a consequence, the term (not the cal-
culation method) RR is often used rather than HR in a survival context also. 
In general, this is not good practice and we recommend the use of RR should 
be restricted so that one automatically knows it is not based on the actual sur-
vival times but perhaps on the proportions alive at a particular time-point.

Worked example: Hazard ratio

From the calculations summarised in Table 10.1, OA = 5, OB = 2, EA = 2.86 
and EB = 4.14. From which

HR
O E
O E

= = =A A

B B

5 2 86
2 4 14

3 6
.
.

. .

Thus the risk of death with treatment A is almost four times that with 
treatment B. The corresponding survival curves are shown in Figure 10.5.

The HR gives an estimate of the overall difference between the survival 
curves. However, summarising the difference between two survival curves 
into one statistic can also have its problems. One particularly important con-
sideration for its use is that the ratio of the relative event rates in the two 
groups should not vary greatly over time.
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It also turns out that if MA and MB are the respective median survival times 
of two groups, then the inverse of their ratio, that is 1/(MA/MB) or MB/MA, is 
approximately the HR.

Confi dence interval for HR

Whenever an estimate of a difference between groups is given, it is useful to 
calculate a confi dence interval (CI) for the estimate. Thus, for the HR 
obtained from any study, we would like to know a range of values which are 
not inconsistent with this estimate.

In calculating CIs, it is convenient if the statistic under consideration can 
be assumed to follow an approximately Normal distribution. However, the 
estimate of the HR is not Normally distributed. In particular it has a possible 
range of values from 0 to ∞, with the null hypothesis value of unity not located 
at the centre of this interval. To make the scale symmetric and to enable us 
to calculate CIs, we transform the estimate to make it approximately Nor-
mally distributed. We do this by using log HR, rather than HR itself, as the 
basis for our calculation.

95% confi dence interval (CI) for a HR

1. Calculate the estimate: log HR.

2. Calculate: SE HR
E E

log( ) = +⎛
⎝⎜

⎞
⎠⎟

1 1

A B

, although this should strictly only 

 be used if the number of events EA + EB = OA + OB is relatively large.
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Figure 10.5 Kaplan–Meier survival curves by treatment group of the data of Table 10.1



 

3. Calculate the 95% CI for log HR as
 log HR − 1.96 × SE(log HR) to log HR + 1.96 × SE(log HR).
4. Calculate the 95% CI for HR as 
 exp[log HR − 1.96 × SE(log HR)] to exp[log HR + 1.96 × SE(log HR)].

Worked example: – Confi dence interval for the HR

Applying the calculation method to the data of Table 10.1 gives OA = 5, 
OB = 2, EA = 2.86 and EB = 4.14. From which log (HR) = 0.71 and

SE HRlog
. .

. .( ) = + =1
2 86

1
4 14

0 7689

A 95% CI for log (HR) sets z0.975 = 1.96 and gives a range from 
0.71 − 1.96 × 0.77 to 0.71 + 1.96 × 0.77 or −0.8 to 2.2. Finally for the CI
for the HR itself, we have to exponentiate these lower and upper limits 
to obtain exp(−0.8) = 0.4 to exp(2.2) = 9.0, that is 0.4 to 9.0. A 20-fold 
range of values!

The wide 95% CI emphasises that reliable conclusions could not be 
drawn from such data.

10.5 Modelling time to event data
If we think of our own lives for a moment, we are continually exposed to the 
possibility of our demise. However, having lived until now, we can think of 
the chance of our demise (say) in the next day, hour, or second as our hazard 
for the next interval be it, a second, hour or day. This can be thought of as 
our instantaneous death rate or failure rate conditional on living until now. 
Alternatively it expresses our hazard at time (our age), t (or now) which is 
denoted h(t).

In general, suppose n people of a certain age group were alive at the start 
of a particular year, and d of these died in the following period of duration 
D units, then the risk of death per unit time in that period is d/(nD). If we 
now imagine the width of the time interval, D, getting narrower and narrower 
then the number of deaths d will get fewer and fewer but the ratio d/D will 
stay constant. This gives the instantaneous death rate or the hazard rate. Thus 
at any particular time (say) t, we think of the hazard rate as applying to what 
is just about to happen in the next very short time period.

Now our own hazard may fl uctuate with time and will certainly increase 
for all of us as, t (our age) increases. Similarly, if we become diseased, perhaps 
with a life-threatening illness, our hazard rate would unquestionably increase 
in which case the aim of therapy would be to restore it to the former (lower) 
value if possible. Individual hazards will differ, even in those of the precisely 
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the same age, and it may be that particular groups may have (on average) 
higher values than others. Thus the hazard of developing dental caries 
may be greater in those who live in areas where fl uoridation has not 
occurred. This leads us to quantify the benefi t of fl uoridation through the 
ratio of hazards (the HR) in those from fl uoridation areas to those from non-
 fl uoridation areas whose value may also be infl uenced by other factors such 
as dietary intake and tooth brushing frequency.

In Chapter 9 we described linear regression techniques for continuous 
data, logistic regression for binary data and both allowed the dependent vari-
able to be related to one or more independent variables or covariates x1, x2,
. . . xk. Although survival time is also a continuous variable the possibility of 
censored observations has to be taken account of in the regression modelling 
process. This leads us to the Cox proportional hazards regression model 
which models, as the dependent variable, the instantaneous hazard, h(t), as 
it is the change in this that ultimately determines our survival time.

The multivariable Cox model links the hazard to an individual i at time t,
hi(t) to a baseline hazard h0(t) by

log log[ ] . . .h t h t x x xi k k( )[ ] = ( ) + + + +0 1 1 2 2β β β ,

where x1, x2,  .  .  .  , xk are covariates associated with individual i. The baseline 
log hazard, log[h0(t)], serves as a reference point, and can be thought of as 
the intercept, a, of a multiple regression equation of Chapter 9; for conve-
nience often labelled b0.

The Cox model is called the proportional hazards model because if we 
imagine two individuals i and j, then the equation assumes that the ratio of 
one hazard to the other, hi(t)/hj(t), remains constant at whatever time, t, we 
consider their ratio. Thus irrespective of how h0(t) varies over time, the 
hazards of the two individuals remain proportional to each other.

The above expression for the Cox model can also be written as

h t h t x x xi k k( ) = ( ) + + +( )0 1 1 2 2exp . . . .β β β

More strictly hi(t) should be written hi(t; x1, x2,  .  .  .  , xk) as it depends both 
on t and the covariates x.

Cox proportional hazards regression model for two groups and 
no covariates

1. We wish to compare the survival time in two groups (control and interven-
tion) denoted by x = 0 and x = 1.

2. The Cox model for the single covariate, x, denoting group is h(t;x) =
h0(t)exp(bx).

3. For the control group, x = 0, h(t;0) = h0(t)exp (b × 0) = h0(t) × 1 = h0(t).



 

4. For the intervention group, x = 1, h(t;1) = h0(t)exp (b × 1) = h0(t) ×
exp(b).

5. The ratio of these is the HR = h(t;1)/h(t;0) = exp(b) and this quantifi es 
the effect of the intervention.

6. The regression coeffi cient of the model, b (= log HR) is estimated from 
the survival time data of both groups.

Technical example

Assume x is a binary variable taking values 0 and 1 for males and females 
respectively and the estimate of the regression coeffi cient, b, calculated 
from the survival data of both groups using the Cox model gives b = 1.5 say. 
With x = 0, hMale = exp(1.5 × 0) = 1.0 while with x = 1, hFemale = exp(1.5 × 1) =
exp(1.5) = 4.5. The associated HR = hFemale/hMale = exp(1.5 × 1)/ exp(1.5 × 0) 
= 4.5/1.0 = 4.5. In this case, there is a greater risk of dying for females.

Worked example: Cox model

Fitting the Cox model to the data of Table 10.1, using a computer package 
gives HR = 3.7. This is quite close to the value of 3.6 resulting from the 
Logrank test that we gave earlier. Such a small difference can be accounted 
for by the rounding during the respective calculations.

However, the 95% CI for the HR is given as 0.71 to 19.7, much wider 
than that given by the previous calculations. This disparity is caused by 
using the expression for the SE(log HR) given earlier which should really 
be confi ned to larger samples. Neither method is entirely reliable in the 
circumstances of our example.

The Cox analysis gives a p-value = 0.097 which compares with the 
Logrank p-value of 0.099 quoted previously.

When the Cox model includes several covariates, although the fi tting pro-
cedure is straightforward using standard statistical packages, care should be 
taken to avoid including too many variables in the multivariable model. It 
has to be recognised that it is the number of events observed, rather than the 
number of subjects in the study that is important. In very broad terms, for 
every variable included in a multivariable Cox model a minimum of 10 
(better 20) events should have been observed. This is to ensure that the 
regression coeffi cients estimated have reasonable precision.
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The Cox model, once fi tted to the survival time data, provides a link to the 
Logrank test and the associated HR. In fact, since log HR = b, the regression 
coeffi cient itself is often referred to as the log hazard ratio.
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Example from the literature: Cox multivariable regression – 
leg ulcers

Morell et al (1998) conducted a randomised controlled trial to compare 
healing times of patients with leg ulcers cared for at home or in the clinic. 
Their results are summarised in Figure 10.6, which suggests that those 
treated in the clinic group heal more quickly.

However, it is known that other factors such as patient age (Age), and 
features of the ulcer itself such as how long it has been present (Duration), 
the area at the time of randomisation (Area), and any history of deep vein 
involvement (DVI no or yes) will affect the healing times – perhaps more 
so than the intervention. The trial involved 213 patients and 129 ulcers 
were observed to heal (the critical event).

If a multivariable Cox regression model is to be used, then the fi ve 
independent variables (Group, Age, Duration, Area, DVI) give 213/5 ≈
40 patients per regression coeffi cient to be estimated and, more impor-
tantly, 129/5 ≈ 25 events. This is probably suffi cient to obtain reliable 
estimates of the corresponding coeffi cients. The resulting Cox model is 
summarised in Table 10.2.

From this analysis, it is clear that even taking account of the possible 
infl uence of the potentially prognostic variables (Age, Area, Duration, 
DVI) the difference between the groups is signifi cant (p-value = 0.006) 
and the effect substantial with HR = log (0.5008) = 1.65 (95% CI 1.16 to 
2.36) in favour of the faster healing in those having a clinic visit.

Although Age, Duration and DVI were thought to be potentially prog-
nostic this did not turn out to be the case as the corresponding 95% CIs 
all included the null value of HR = 1. In contrast, increasing Area is clearly 
adversely prognostic with HR = 0.69 (CI 0.58 to 0.83).

In the above example, the HR for the continuous covariate Area is 
expressed using units of 10 cm2. This implies that a leg ulcer of (say) 30 cm2

will heal 0.69 times less speedily than will one of 20 cm2. The change could 
have been expressed in terms of 1 cm2 in which case the regression coeffi -
cient would have been −0.03666 with HR = exp(−0.03667) = 0.964. However, 
0.96410 = 0.69, as we have in Table 10.2 for the HR for Area.

The choice of units used in the calculations will depend on circumstances but 
for Age, for example, it is very unlikely even if age does indeed infl uence healing 
rate, that there will be much difference in healing between individuals of say 69 
and 70 years, whereas a marked difference may be seen comparing individuals 
who are 60 as opposed to 70 years. This argues for decades as the unit for analy-
sis rather than years. Nevertheless, whichever method is chosen, this choice 
does not affect the conclusions we draw but just how we express them.



 Further details of the Cox model are given by Walters (2003), Campbell 
(2006) and Machin et al (2006).

10.6 Points when reading the literature
Interpreting the results of a survival analysis

• Is the nature of the censoring specifi ed? As far as possible check that the 
censoring is non-informative.

• Check that the total number of critical events is reported, as well as sub-
jects and person-time of follow-up, with some measure of variability such 
as a range for the latter. In trials, are numbers of censored observations 
given by treatment group?

• Is the estimated survival rate at a conventional time point, by group, with 
confi dence intervals given?

Table 10.2 Cox multivariable proportional hazards regression model fi tted to the healing 
times of 213 patients with leg ulcers (data from Morrell et al, 1998)

b SE(b) z p-value HR = exp(b) 95% CI

Group 0.5008 0.301 2.75 0.006 1.65 1.16 to 2.36
Age (per 10 years) 0.06976 0.080 0.82 0.41 1.07 0.91 to 1.26
Area (per 10 cm2) −0.3666 0.090 −4.04 0.001 0.69 0.58 to 0.83
Duration (years) −0.03605 0.002 −1.39 0.17 0.96 0.91 to 1.01
DVI (No vs. Yes) −0.0866 0.202 −0.39 0.70 0.92 0.60 to 1.41
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Figure 10.6 Healing times of initial leg ulcers by clinic and home care group From 
Morrell et al (1998). Cost effectiveness of community leg clinics. British Medical Journal,
316, 1487–1491: reproduced by permission of the BMJ Publishing Group
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• Are the Kaplan–Meier survival curves by group displayed?
• Are the numbers at risk reported at regular time intervals?
• Is the regression model used specifi ed?
• Is the proportional hazards assumption reasonable and has it been 

validated?
• If a multivariable Cox model is used, are the corresponding HRs and CIs 

reported for all the variables included?
• Are the conclusions drawn critically dependent on the statistical assump-

tions made?
• Is the computer program used for the analysis indicated?

10.7 Exercises
1. In the clinical trial of Hancock et al. (2004) to compare a new treatment 

for malignant melanoma (a form of skin cancer), patients were randomised 
to one of two groups: treatment with low-dose interferon alfa-2a as adju-
vant therapy (Intervention – interferon), or no further treatment (Control 
– observation). They were followed up until the patient died or 5 years 
from randomisation. The survival times in years for a random sample of 
10 patients from the Intervention group were as follows:

0.91, 1.30, 1.56, 2.59*, 3.74, 3.76*, 4.28, 4.43, 5.0*, 5.0*

 (* A star indicates a censored observation.)

(a)  Explain what is meant by a censored observation. Also explain the 
meaning of the term hazard function.

(b)  Construct the Kaplan–Meier survival curve for this random sample of 
10 patients from the Intervention group and show it on a suitable 
graph.

(c) The full trial involved 674 patients, with 338 randomised to the Inter-
vention group and 336 to the Control group. Figure 10.7 shows Kaplan–
Meier estimates of survival functions for the overall survival times for 
the two treatment groups, and the results of a log-rank test.

Use Figure 10.7 to estimate the median overall survival times for the 
two treatment groups. Is there a difference in the survival patterns of the 
two treatment groups? Comment on the results of the Logrank test.

Previous studies have suggested that age, gender and histology are 
important factors in predicting overall survival time. Cox proportional 
hazards regression analysis was used to adjust survival times for these 
prognostic variables.

Table 10.7 shows abbreviated computer output from two Cox regres-
sion models. In Analysis 1, a simple regression of overall survival time on 



 

Figure 10.7 Kaplan–Meier estimate of overall survival functions by treatment group
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Log rank test = 0.74 on 1 df, p = 0.39

Group

Control - Observation
(n=336)

Intervention - 
Interferon (n=338)

Table 10.7 Computer analysis of survival data

Analysis 1: Cox regression – model: group

No. of subjects =     674
No. of failures =     351

     | Haz.Ratio Std.Err. z P>|z| [95% Conf. Interval]
 +     
  group | .912 .098 -0.86 0.391 .740 1.125
      

Analysis 2: Cox regression – model: age gender histology group
      
     | Haz.Ratio Std.Err. z P>|z| [95% Conf. Interval]
 +     
    age  | 1.002 .004  0.60 0.549  .994 1.010

gender | .739 .081 -2.76 0.006  .596 .916
histology | 1.602 .240  3.15 0.002 1.195 2.149

group | .915 .098 -0.83 0.409  .741 1.130
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treatment group alone was performed. Analysis 2 involved a multiple 
regression of survival time on age (years), gender and histology. (Note 
that gender was coded 0 = ‘Male’ and 1 = ‘Female’; histology as ‘localised 
non-metastatic’ = 0 and ‘metastatic’ = 1. Similarly, treatment group was 
coded as 0 = Control and 1 = Intervention).

(d)  Which variables are related to survival? Can one tell from the infor-
mation given here if the model is good for predicting individual 
survival?

(e)  Compare the hazard ratio for group from Analysis 2 that derived from 
Analysis 1.

2. Roche et al (2005) followed up 2448 consecutive patients who had been 
admitted to one hospital with an acute hip fracture. After one year 33% 
had died. They found the following results after a univariate and a multi-
variate Cox regression on deaths over one year.

Variable Hazard ratio (95% CI)

 Univariate Multivariate (allowing for age,
  sex, and other covariates)

Comorbid cardiovascular disease 1.4 (1.2 to 1.6) 1.0 (0.8 to 1.2)
Comorbid respiratory disease 1.6 (1.3 to 1.9) 1.4 (1.1 to 1.7)
Post-operative chest infection 5.0 (4.2 to 6.0) 2.4 (1.9 to 3.0)
Parkinson’s disease 1.4 (1.0 to 1.9) 1.1 (0.8 to 1.6)

(a)  Interpret the hazard ratios for comorbid respiratory disease in the 
univariate and multivariate analysis.

(b)  Is comorbid cardiovascular disease a signifi cant risk factor? Discuss 
why the univariate and multivariate analyses differ. Is there any other 
variable that changes signifi cance in the multivariate analysis?

(c) Why do you think the hazard ratio for post-operative chest infection 
is reduced?

(d)  What assumption underlies the model for these variables? Do you 
think it equally likely for all the variables?
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Summary

In the health sciences, often measurements are made which need to be vali-
dated. Physiotherapists may need a reliable method of measuring pain, an 
occupational therapist a reliable method of assessing whether someone is 
lifting a heavy weight correctly. In addition, different observers may come to 
different conclusions. Radiologists may disagree on the interpretation of an 
X-ray, physiotherapists on the level of pain actually experienced or patholo-
gists on the histological grade of a tumour. Many projects start with a pro-
posed method of measuring something, and the important question is: ‘Does 
this instrument measure what it purports to measure?’ In many disciplines 
new techniques evolve that are simpler or less invasive than earlier proce-
dures and an important question is whether the new procedure can be used 
instead of the earlier one. This chapter has a different emphasis to preceding 
ones in that we are not testing whether something is reliable but rather mea-
suring how reliable it is.

11.1 Introduction
Many measurements that are taken during any study require some degree of 
subjective judgement, whether this is when taking a temperature with a ther-
mometer, assessing the results of diagnostic procedures or observing the effects 
of therapies. As a consequence, were the same observer to repeat, or different 
observers to appraise, the same outcome measure they may not obtain identi-
cal results. Observer agreement studies investigate the reproducibility of a 
single observer, and the level of the consensus between different observers, 
assessing the same unit, be it a specimen, radiograph or pathology slide.

Typically in observer agreement studies, several observers make assess-
ments on each of a series of experimental units and these assessments are 
compared. For example, to examine the variation in measurements of the 
volume of intracranial gliomas from computed tomography, different observ-
ers might evaluate scans from a series of patients. The values of tumour 
volume so recorded could then be compared. In other circumstances, the 
assessments may be of binary form such as a conclusion with respect to the 
presence or absence of metastases seen on liver scintigraphy. Clearly, an ideal 
situation is one in which all the observers agree and the answer is correct. 
The correct answer can only be known if there is a ‘gold’ standard means of 
assessment available. For some diseases this may be only possible at autopsy 
but this is clearly too late for patient care purposes.

Assessment of reliability consists of determining that the process used for 
measurement yields reproducible and consistent results. Any measurement 
whether on a numerical scale or by more subjective means, should yield 



 

reproducible or similar values if it is used repeatedly on the same patient 
whilst the patient’s condition has not changed materially. In these circum-
stances, reliability concerns the level of agreement between two or more 
repeated measures. This is sometimes known as the test–retest reliability.

Suppose the measuring instrument is a questionnaire, perhaps to measure 
patient quality of life. Then during the development stage of the question-
naire itself the reliability of the scales to be ultimately used is of particular 
concern. Thus for scales containing multiple items, all the items should have 
internal reliability and therefore be consistent in the sense that they should 
all measure the same thing. Just as with any quantitative measurement the 
fi nal questionnaire should have test–retest reliability also.

It is important to note that tests of statistical signifi cance are rarely appro-
priate for reliability studies. Thus Table 11.2 below looks like a standard 
(paired) 2 × 2 contingency table to be analysed by McNemar’s test, but this 
will not tell us whether the reviewer is reliable.

11.2 Repeatability
A basic requirement of a measurement is that it is repeatable; if the same 
measurement is made on a second occasion, and nothing has changed then 
we would expect it to give the same answer, within experimental error.

Coeffi cient of variation

For a continuous observation which is measured more than once a simple 
measure of repeatability is the coeffi cient of variation (CV) which is the within 
subject standard deviation divided by the mean.

CV
SD

Mean
s
x

= × ( ) =100 100Within subject
,Within

where x and sWithin are calculated from continuous data obtained from the 
same subject in a stable situation.

The CV is a measure of variation which is independent of the units in which 
the observation is measured. It is often used in, for example, clinical biochem-
istry where repeated assays are made on a substance with known concentration 
to test the assay method. Commonly a CV of <5% is deemed acceptable.

Example: CV – pulse rate

In the example of Section 3.3 in which the pulse rate in one subject 
was taken at 5 minute intervals on 12 occasions in 60 minutes, the mean 
rate was x = 63 beats/min and the within–subject standard deviation, 
sWithin = 2.2 beats/min. Thus the CV = (100 × 2.2)/63 = 3.5%.
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Intra-class correlation coeffi cient (ICC)

Rather than repeated measures being confi ned to only a single subject the 
more usual situation is to have repeated (often duplicate and by the same 
rater) measures on a number of subjects. In this case there are two sources 
of variability that must be taken into account when assessing repeatability. 
The fi rst source, as with the CV, is the within patient standard deviation and 
the second, since we are now concerned with several individuals on which 
the duplicates are taken, is the between subject standard deviation, sBetween.

In these circumstances, repeatability can be assessed by the intra-class cor-
relation coeffi cient (ICC). This measures the strength of agreement between 
repeated measurements, by assessing the proportion of the between-patient 
variance (the square of the standard deviation), to the total variance, com-
prising the sum of both the within and between variation.

ICC
s

s s
=

+
Between
2

Within
2

Between
2 ,

where sWithin and sBetween are the within and between subject standard 
deviations.

If we only have one observation per person we cannot estimate the within 
person standard deviation. If we have more than one observation per person, 
we can estimate the standard deviation for each person and take the average 
variance as an estimate of s2

Within. We can estimate the between person 
variance from the variance of the means for each person as shown in 
Section 11.5.

If the ICC is large (close to 1), then the within rater (or random error) 
variability is low and a high proportion of the variance in the observations is 
attributable to variation between raters. The measurements are then described 
as having high reliability. Conversely, if the ICC is low (close to 0), then the 
random error variability dominates and the measurements have low reliabil-
ity. If the error variability is regarded as ‘noise’ and the true value of raters’ 
scores as the ‘signal’, then the ICC measures the signal–noise ratio.

The ICC is the most commonly used method for assessing reliability with 
continuous data. It is also sometimes used for ordered categorical data that 
have more than four or fi ve response categories. A value of at least 0.90 is 
often recommended if the measurements of concern are to be used for evalu-
ating future patients for which therapeutic decisions are to be made.

In the context of a questionnaire, say to assess quality of life (QoL), if a 
patient is in a stable condition, an instrument should yield repeatable and 
reproducible results if it is used repeatedly on that patient. This is usually 
assessed using a test–retest study, with patients who are thought to have 
stable disease and who are not expected to experience changes due to treat-
ment effects or toxicity. The patients are asked to complete the same QoL 



 

questionnaire on several occasions. The level of agreement between the 
occasions is a measure of the reliability of the instrument. It is important to 
select patients whose condition is stable, and to choose carefully a between-
assessment time-gap that is neither too short nor too long. As would be the 
case for a pathologist making a diagnosis from slides, too short a period might 
allow subjects to recall their earlier responses, and too long a period might 
allow a true change in the status of the subject. However, problems associated 
with developing and using QoL and other instruments are often rather spe-
cialist in nature and readers are referred to Fayers and Machin (2007) for a 
more detailed discussion.

Example from the literature: ICC – Paediatric Asthma Quality of 
Life Questionnaire

Juniper et al (1996) evaluated the Paediatric Asthma Quality of Life 
Questionnaire (PAQLQ) by examining reliability in children aged 7 to 17 
who had stable asthma. The corresponding ICC values are shown in Table 
11.1, and all are above 0.80. These fi ndings suggest that the PAQLQ has 
high test–retest reliability in stable patients.

Table 11.1 ICC values for reliability of items in the PAWLQ 

Item Within-subject SD Between-subject SD Intraclass correlation ICC

Overall QoL 0.17 0.73 0.95
Symptoms 0.22 0.84 0.93
Activities 0.42 0.96 0.84
Emotions 0.23 0.64 0.89

From Juniper et al (1996). Measuring quality of life in children with asthma. Quality of Life Research,
5, 35– 46. © Springer. Reproduced by permission of Springer Science and Business Media.

Inappropriate method

Despite the ICC being the appropriate measure to use, the Pearson correla-
tion coeffi cient, r, of Sections 9.2 and 9.9, is sometimes mistakenly used in 
this context. Clearly, if duplicate measures are made on n subjects, then r can 
be calculated. However, repeated measurements may have a value of r close 
to 1 and so be highly correlated yet may be systematically different. For 
example, if the observer records consistently higher values on the fi rst occa-
sion than on the second by (say) exactly 10 units on whatever measuring 
instrument is being used, then there would be zero agreement between the 
two assessments. Despite this, the correlation coeffi cient would be 1, indicat-
ing perfect association. So as well as good association, good agreement is 
required, which implies near equality of the measures being taken.
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11.3 Agreement
A common problem is measuring how well two observers make a binary 
(Yes/No) diagnostic decision, say after examining a patient or perhaps a 
specimen taken from a patient. A similar problem is how consistent does a 
single observer make the same decision. To assess the latter, we would 
require the same assessments to be repeated by the same observer. For 
example, the same slide would need to be reviewed by the pathologist on 
two occasions. The second review would need to be undertaken ‘blind’ to the 
results of the fi rst review and clearly some time later. A ‘wash-out’ period 
long enough to ensure that the pathologist did not ‘recognise’ the slide but 
not too much later if the period may cause deterioration of the specimen or 
after the observer (now more experienced) changes his/her methods in a 
systematic way.

For a single observer examining the same specimen on two occasions, or 
two observers examining the same specimen but independently of each other, 
the degree of reproducibility is quantifi ed by the probability of making a 
chance error. In the context of making a defi nitive (and binary) diagnosis, 
this is the probability of ascribing either absent (coded 0) to a diagnosis when 
it should be present (coded 1), or a 1 to a diagnosis that should be 0. For 
NRepeat specimens this process is described in Table 11.2.

One method of measuring whether a reviewer agrees with themselves, or 
two reviewers agree, is simply to calculate the percentage of occasions the 
same response is obtained.

Observer(s) agreement The estimated probability the observer(s) agree is

P
x x
N

Agree
Repeat

= +00 11 .

Observer(s) disagreement The estimated probability observer(s) disagree is

P
x x
N

Disagree
Repeat

= +10 01 .

Table 11.2 The possible outcomes for a single observer 
review ing the same material on two occasions, or two observers 
review ing the same material independently of each other

Second Review(er) First review(er)

 Absent Present Total

Absent x00 x01 n0

Present x10 x11 n1

Total m0 m1 NRepeat



 

Cohen’s kappa (k)

If the diagnostic choice is binary, then there is a very limited number of 
options (only 2) for each specimen so that if observers made their repeated 
choices at random, rather than by careful examination, these will agree some 
of the time. Jacob Cohen developed the kappa (k) statistic in 1960 to allow 
for chance agreements of this kind. It is essentially the proportion of cases 
that the raters agree minus the proportion of cases they are likely to agree 
by chance, scaled so that if the observers agree all the time, then k is one. 
Thus if k is equal to 1, there is perfect agreement, and when k = 0 the agree-
ment is no better than chance. Negative values indicate an agreement that is 
even less than what would be expected by chance.

Cohen’s k is given by:

κ =
−

−
P P

P
Agree Chance

Chance

,
1

where PChance is the proportion expected to show agreement by chance alone. 
The method of calculating PChance is given in Section 11.7.

Example from the literature: Cohen’s k – safety advice

Clamp and Kendrick (1998) used a telephone survey asking about 
safety to 165 families with children aged under 5 years who had been 
involved in a randomised trial concerning safety advice. They chose 
a random sample of 20 families from the survey who then received a 
home visit 2 weeks later to measure the consistency of the response to 
the questions posed. The investigators found that, for most questions, 
a high k value (>0.59) was obtained and so concluded that the survey 
was valid.

The concept of a binary diagnostic division may be extended to that of an 
ordered categorical variable where, for example, a pathologist may grade 
patient material into different grades perhaps indicative of increasing severity 
of the disease. In which case the results may be summarised in a square 
R × R contingency table where R is the number of possible grades that can 
be allocated to the specimen.

Worked example: Cohen’s k – pathology review

Table 11.3 shows a comparison of two pathologists reviewing biopsy mate-
rial from 118 patients with lesions of the uterine cervix. The grade catego-
ries were I = negative, II = tsquamous hyperplasia, III = carcinoma-in-situ 
and IV = squamous carcinoma.
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Kappa was developed for categorical classifi cations, where dis-
agreement is equally likely between categories. When the categories are 
ordered, disagreement between more extreme categories is less likely. 
One can extend the concept of k and give less weight to the more extreme 
disagreements. One set of weights (which weight the disagreement by 
the square of the distance between categories), leads to the equivalent 
of the ICC.

Kappa (k) has a number of limitations:

1. The maximum value of k = 1 is only obtainable when unbiased observers 
agree completely.

2. For a given level of agreement, k increases when the number of categories 
decreases, and so should only be used for comparisons when the number 
of categories is the same.

3. k depends on the marginal distributions, (the values of n0, n1, m0 and m1

in Table 11.2) so one can get the same values of k, but different apparent 
agreements if, in one comparison one observer has a systematic bias, but 
in the other there is more random disagreement.

4. Some computer programs give p-value associated with k. These should be 
ignored since the null hypothesis they are testing has no meaning.

The observed values in the diagonal (in bold) are O11 = 22, O22 = 7, 
O33 = 36 and O44 = 7. The corresponding expected values are E11 = 26 ×
27/112 = 6.27, E22 = 2.79, E33 = 22.39 and E44 = 1.38. Further, pObserved = (22 
+ 7 + 36 + 7)/112 = 0.64 and pExpected = (6.27 + 2.79 + 22.39 + 1.38)/112 =
0.29. Hence, k = (0.64 − 0.29)/(1 − 0.29) = 0.49. This is only ‘moderate’ 
agreement and such a low value may then stimulate the pathologists con-
cerned to review their classifi cation methods in detail.

Table 11.3 Pathologist agreement resulting from indepen-
dent reviews of the same biopsy specimens from patients with 
lesions of the uterine cervix

Pathologist 1 Grade Pathologist 2 Totals

  I II III IV

 I 22  2  2 0  26
 II  5  7 14 0  26
 III  0  2 36 0  38
 IV  0  1 14 7  22
Totals  27 12 66 7 112



 

11.4 Validity
Cronbach’s alpha (aCronbach)

Some questionnaires, such as those used to assess concepts such as anxiety 
and depression in patients often comprise a series of questions. Each question 
is then scored, and the scores combined in some way to give a single numeri-
cal value. Often this is done by merely summing the scores for each answer 
to give an overall scale score. The internal validity of each of the component 
questions of the scale is indicated if they are all positively correlated with 
each other; a lack of correlation of two such items would indicate that at least 
one of them was not measuring the concept in question. Alternatively, one 
might frame a question in two different ways, and if the answers are always 
similar, then the questions are internally consistent.

A measure of internal consistency is Cronbach’s alpha, aCronbach (sometimes 
spelled Chronbach). It is essentially a form of correlation coeffi cient; a value 
of 0 would indicate that there was no correlation between the items that make 
up a scale, and a value of 1 would indicate perfect correlation.

If a questionnaire has k items, and this has been administered to a group 
of subjects, then the standard deviation, si, of the ith item and sT the standard 
deviation of the sum score T of all the items is required. From which

αCronbach =
−

−
⎛

⎝⎜
⎞

⎠⎟
∑k

k

s

s
i

T1
1

2

2 .

A worked example is given in Section 11.7. For comparing groups, aCronbach

values of 0.7 to 0.8 are regarded as satisfactory, although for clinical applica-
tions much higher values are necessary. However, a value of 1 would indicate 
that most of the questions could in fact be discarded, since all the information 
is contained in just one of them. Cronbach’s a is essentially a measure of how 
correlated items are. Clearly, one would like items that all refer so a single 
concept such as pain to be related to each other. However, if they are too 
closely related then some of the questions are redundant. When constructing 
a questionnaire, one might omit items which have a weak or very strong cor-
relation with other items in the domain of interest.

Example from the literature: aCronbach – patient satisfaction

McKinley et al (1997) used a questionnaire to measure patient satisfaction 
with out-of-hours calls made to general practitioners. They measured 
aspects such as satisfaction with communication, management and the 
doctor’s attitude. They found values of aCronbach for each score ranging from 
0.61 to 0.88 and concluded that the questionnaire had satisfactory internal 
validity.
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11.5 Method comparison studies
A feature of laboratory work, and of many aspects of clinical work, is the 
evaluation of new instruments. It is usual in such studies to compare results 
obtained from the new method with that obtained from some standard. Alter-
natively, two devices may be proposed for measuring the same quantity and 
one may wish to determine which is the better. These may be, for example, a 
common paper tape measurement and a new plastic grid device to assess the 
extent of leg ulcer wounds as were compared by Liskay et al (2002).

0
2

4
6

0 1 2 3 4 5
Vitalograph (l)

Respiradyne (l) y

Figure 11.1 FEV1 (litres) in 56 subjects by two different spirometers with the line of 
equality

Example: Method comparisons – two spirometers

Forced expiratory volume (FEV1), which is the volume of air expelled in 
the fi rst second of maximal forced expiration from a position of full inspi-
ration, is measured by using a spirometer. Figure 11.1 displays the results 
of a study in which 56 subjects had their FEV1 measured by both a Respi-
radyne and a Vitalograph spirometer (Jenkins et al, 1988). The purpose 
of the study was to see if the Respiradyne spirometer could be used in 
place of the Vitalograph.

As indicated above, a common method of analysis is fi rst to calculate the 
correlation coeffi cient between the two sets of readings and then calculate a 
p-value on the null hypothesis of no association.



 

Why calculating the correlation coeffi cient is inappropriate

1. The correlation coeffi cient is a measure of association. What is required 
here is a measure of agreement. We will have perfect association if the 
observations lie on any straight line, but there is only perfect agreement 
if the points lie on the line of equality y = x.

2. The correlation coeffi cient observed depends on the range of measure-
ments used. so one can increase the correlation coeffi cient by choosing 
widely spaced observations. Since investigators usually compare two 
methods over the whole range of likely values (as they should), a good 
correlation is almost guaranteed.

3. Because of (2), data which have an apparently high correlation can, for 
individual subjects, show very poor agreement between the methods of 
measurement.

4. The test of signifi cance is not relevant since it would be very surprising if 
two methods designed to measure the same thing were not related.

Bland and Altman (1986) argue that correlation coeffi cient is inappropri-
ate and recommend an alternative approach. As an initial step one should 
plot the data as in Figure 11.1, but omit the calculation of the corresponding 
correlation coeffi cient and the associated test of signifi cance. They then argue 
that a plot of the paired difference, d, between the two observations on each 
subject against their mean value is more likely to reveal features of these 
data in particular any systematic differences between methods.

Example: Bland and Altman plots – two spirometers

Figure 11.2 displays the scatter plot of the difference in FEV1, as assessed 
by the Respiradyne and Vitalograph spirometers in each patient, against 
their mean value. From this plot it can be seen that there is no obvious 
relation between the size of the difference observed and the mean. Further, 
Figure 11.2 highlights the outlier (with d less than −0.5) whereas it is not 
so prominent in Figure 11.1.
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The lack of agreement between methods is estimated by the mean differ-
ence, d , and this provides an estimate of the systematic difference between 
the methods (ideally zero) which is termed the bias should one of the methods 
be a gold standard. Further the standard deviation of these differences allows 
the ‘limits of agreement’ to be set.

Method comparisons If one method records as y and the other as x, then 
d = y − x is calculated for each subject, and the corresponding mean, d , and 
standard deviation, s, are calculated. Systematic difference or bias: d , 95% 
‘limits of agreement’ d − 2s to d + 2s.
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If an outlier is present it is good practice to check the results for this 
subject. Perhaps there has been a mistake entering the data, and if necessary 
that subject could be excluded from the calculations for the limits of 
agreement.

11.6 Points when reading the literature
1. When a new instrument has been used, has it been tested for reliability 

and validity?
2. When two methods of measurement have been compared, has correlation 

been used to assess whether one instrument can be used instead of another? 
If so are there systematic biases?

3. When Cohen’s kappa is compared, are the marginal distributions similar? 
If not, then be careful about making comparisons.
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Figure 11.2 Scatter diagram of the difference between methods against the mean of both 
for the data of Figure 11.1

Example: Limits of agreement – two spirometers

For the FEV1 data the mean difference d = 0.06 � and SD(d) = s = 0.15 �.
The ‘limits of agreement’ are −0.24� to 0.36 � implying that one spirometer 
could give a reading as much as 0.36 � above the other or 0.24 � below it. 
Whether the bias observed or the limits of agreement are acceptable needs 
to be judged from a clinical viewpoint.



 

11.7 Technical details
Calculation of the ICC

Suppose we measured FEV1 on four patients with the following result 
(Table 11.4):

Our model is yij = m + ti + eij where m is the overall mean, ti is the additional 
effect of subject i and eij is the random error from one measurement, j, to 
another. We assume t and e are random independent variables. The variance 
of t is the between subject variance and the variance of e is the within subject 
variance. It is important to note that we are not assuming an ‘occasion’ effect 
here. The calculations will give the same result if some of the observations 
on the two occasions are swapped. This is known as an exchangeable error.

With n pairs of observations xi1 and xi2, i = 1  .  .  .  n, the within subject 
variance is estimated by s2

Within = Σn
i=1(xi1 − xi2)2/2n. Also if xi = (xi1 + xi2/2) then 

var(xi) = s2
Between + s2

Within/2

s xiWithin  and 2 2 2 2 20 1 0 2 0 0 1 8 0 0075= −( ) + −( ) + + ( )⎡⎣ ⎤⎦ = ( ). . . . var == 0 0676. .

Thus s2
Between = 0.0676 − 0.0075/2 = 0.06385.

ICC = 0.06385/(0.0075 + 0.06385) = 0.895.

This is high and suggests the measurements of FEV1 are repeatable.

Table 11.4 FEV1 (in litres) for four patients measured on two 
occasions

Subject FEV1 (litres)

 1st occasion 2nd occasion Difference mean

1 2.1 2.2 −0.1 2.15
2 2.3 2.5 −0.2 2.4
3 2.6 2.6 0.0 2.6
4  2.8 2.7 0.1 2.75
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Calculation of Cronbach’s alpha

Suppose a section of a questionnaire has three items, which measure pain 
say, each of which can have a score between 1 (no pain) and 5 (severe pain). 
The total of the three items make up the total pain score for a particular 
dimension of the questionnaire (Table 11.5).

If a questionnaire has k items, and this has been administered to a group 
of subjects, then if si is the SD of the ith item, T is the sum score of all 
the items, and sT is the SD of T, then Cronbach’s alpha, aCronbach, is 
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αCronbach =
−

−
⎛

⎝⎜
⎞

⎠⎟
∑k
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s

s
i

T1
1

2

2 .

Thus for our data k = 3, and Σs2
i = 1.632 + 1.712 + 0.952 = 6.4835, s2

T = 16.9744 
and so a = 1.5(1 − 6.4835)/16.9744 = 0.927.

The reason that aCronbach is a measure of correlation is as follows. If X1  .  .  .  Xk

are independent random variables, and T = X1 +  .  .  .  + Xk then Var(T) =
Var(X1) +  .  .  .  + Var(Xk) and so the numerator and denominator in the braces 
in the equation for aCronbach are the same and so aCronbach = 0. If X1  .  .  .  Xk are 
perfectly correlated so that X1 = X2 =  .  .  .  = Xk then T = kX1 and Var(T) =
k2Var(X1), whereas ΣVar(Xi) = kVar(X1). Thus the ratio in the braces is now 
1/k and so aCronbach = 1.

Agreement by chance (PChance)

From Table 11.2, pAgree = (x00 + x11)/NRepeat. To get the expected agreement 
we use the row and column totals to estimate the expected numbers agreeing 
for each category.

For negative agreement (Absent, Absent) the expected proportion is the 
product of (x01 + x00)/NRepeat and (x10 + x00)/NRepeat, giving (x00 + x01)(x00 + x10)/
N2

Repeat. Likewise for positive agreement the expected proportion is 
(x10 + x11)(x01 + x11)/N2

Repeat. The expected proportion of agreements for the 
whole table is the sum of these two terms, that is

P
x x x x

N
x x x x

N
Chance

Repeat
2

Repe

= +( ) +( ) + +( ) +( )00 01 00 10 10 11 01 11

aat
2 .

Suppose we have an R × R contingency table, where R > 2, and the rows 
contain the categories observed by one rater and the columns the categories 
observed by the other rater. By analogy with Table 11.2, then the numbers 
in the diagonals of the table, that is xii, are the numbers observed when the 
two raters agree. The corresponding numbers expected by chance in category 
i are labelled eii.

Table 11.5 Responses to three questions and total score 
for four subjects

Subject Q1 Q2 Q3 Total Score

1 1 1 2  4
2 3 3 2  8
3 5 5 4 14
4 3 2 3  8
SD 1.63 1.71 0.95  4.12



 

If N is the number of specimens classifi ed and we denote PAgree = Σxii/N
and PChance = Σeii/N, then

κ = −
−

P P
P

Observed Chance

Chance1
.

11.8 Exercises
1. Collecting a urine sample in young non-toilet trained children can be chal-

lenging. The standard method is a urine collection bag device, but this is 
uncomfortable and can be contaminated. Farrell et al (2002) compare the 
bag, with the use of an absorbent sanitary pad. They studied 20 children 
and used the methods concurrently and their results are summarised in 
Table 11.6.

Find Cohen’s kappa and interpret.

Table 11.6 Presence or absence of bacteria in bags or pads 
for urinary incontinence

Pad Bag Total

 Bacteria present Bacteria absent

Bacteria present 2  0  2
Bacteria absent 3 15 18

Total 5 15 20

 11.8 EXERCISES 215

2. Bland and Altman (1997) describe the mini-HAQ that measures impair-
ment in patients with cervical myelopathy. There are 10 items relating to 
activities of daily living: stand, get out of bed, cut meat, hold cup, walk, 
climb stairs, wash, use toilet, open a jar and enter/leave a car. The standard 
deviations from 10 questions in 2549 subjects are respectively: 1.04, 1.11, 
1.12, 1.06, 1.04, 1.04, 1.01, 1.09, 1.02 1.03. The 10 items were summed for 
each subject and the SD of the total score was 8.80. Calculate and comment 
on the value of aCronbach.
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Summary

This chapter considers the design of observational studies: cross-sectional 
surveys, case–control studies and cohort studies together with the problems 
of inferring causality from such studies. A vital tool for eliciting information 
from subjects is the questionnaire and we discuss how these may be con-
structed and also how samples may be chosen.

12.1 Introduction
In an observational study one cannot determine which subjects get exposed 
to a risk, or given a new treatment. This is in contrast to the randomised 
controlled trial, to be described in Chapter 13. In many situations where an 
investigator is looking for an association between exposure to a risk factor 
and subsequent disease, it is not possible to randomly allocate exposure 
to subjects; you cannot insist that some people smoke and others do not, 
or randomly expose some industrial workers to radiation. Thus, studies 
relating exposure to outcome are often observational; the investigator 
simply observes what happens and does not intervene. The options under 
the control of the investigator are restricted to the choice of subjects, 
whether to follow them retrospectively or prospectively, and the size of the 
sample.

The major problem in the interpretation of observational studies is that 
although an association between exposure and disease can be observed, this 
does not necessarily imply a causal relationship. For example, many studies 
have shown that smoking is associated with subsequent lung cancer. Those 
who refuse to believe causation argue, however, that some people are geneti-
cally susceptible to lung cancer, and this same gene predisposes them to 
smoke! Factors that are related to both the exposure of a risk factor and the 
outcome are called confounding factors (see Figure 1.1 in Chapter 1). In 
observational studies it is always possible to think of potential confounding 
factors that might explain away an argument for causality. However, some 
methods for strengthening the causality argument are given later in the 
chapter.

12.2 Risk and rates
We introduced methods of summarising binary data in Chapter 2. We now 
provide more detail of these and some others.

Risk is defi ned as

Risk
Number of events observed

Number in the group
=



 

Thus if 100 people sat down to a meal and 10 suffered food poisoning, we 
would say the risk of food poisoning was 0.1 or 10%.

Often, however, we are interested in the number of events over a period 
of time. This leads to the defi nition of a rate, which is the number of events, 
for example deaths or cases of disease, per unit of population, in a particular 
time span. For example, Figure 4.1 shows that the crude United Kingdom 
mortality rate per person per year is about 0.010. Since this is a small number 
we usually multiply it by a larger number such as 1000, and express the mor-
tality rate as 10 deaths per 1000 population per year.

To calculate a rate the following are needed:

• a defi ned period of time (for example, a calendar year);
• a defi ned population, with an accurate estimate of the size of the popula-

tion during the defi ned period (for example the population of a city, esti-
mated by a census);

• the number of events occurring over the period (for example the number 
of deaths occurring in the city over a calendar year).

The event could be a permanent one (like death) or a temporary one (like 
a cold). For a permanent event the person is no longer at risk of the event, 
and is removed from the ‘at risk’ population. Strictly, we should measure all 
the time that each member of the population is at risk.

Incidence is defi ned as

Incidence
Number of events in defined period

Total person-time at
=

rrisk
× 1000

When the number of events is relatively small compared with the popula-
tion at risk, then the total person-time at risk can be approximated by the 
mid-period population multiplied by the length of the period.

Crude mortality rate

When the length of the period is one year, an example of a rate is the crude 
mortality rate (CMR) for a particular year which is given by

CMR
Number of deaths occurring in year

Mid-year population
.= × 1000

It is important to remember that rates must refer to a specifi c period of 
time.

Age-specifi c mortality rate

If a particular age group is specifi ed, the age-specifi c mortality rate (ASMR) 
is obtained as
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ASMR
Number of deaths occurring in specified age group

Mid-year n
=

uumber in that age group
× 1000.

The incidence rate refers to the number of new cases of a particular disease 
that develop during a specifi ed time interval. The prevalence (which is strictly 
not a rate since no time period is specifi ed) refers to the number of cases of 
disease that exist at a specifi ed point in time.

Often the time period is implicit and risk and incidence are used 
synonymously.

12.3 Taking a random sample
For any observational studies, it is necessary to defi ne the subjects chosen 
for the study in some way. For example, if a survey were to be conducted 
then a random sample of the population of interest would be required. In 
this situation, a simple random sample could be obtained fi rst by numbering 
all the individual members in the target population, and then computer-
 generating random numbers from that list. Suppose the population totals 600 
subjects, which are numbered 001 through to 600. If we use the fi rst line of 
the random numbers in Table T2 and fi nd the random sequence 534 55425 
67. We would take the fi rst three subjects as 534, 554 and 256, for example. 
These subjects are then identifi ed on the list and sent a questionnaire. If the 
population list is not on computer fi le or is very large, the process of going 
backwards and forwards to write down addresses of the sample can be a 
tedious business. Suppose a list is printed on 1000 pages of 100 subjects per 
page, and a 10% sample is required, then one way is to choose a number 
between 1 and 100; from our sequence this would be 53, so we then take the 
53rd member on every page as our sample from the population. This is clearly 
logistically easier than choosing a random sample of 1000 from a list of 
100 000. A 0.5% sample would take someone from every second page after 
fi rst choosing the entry at random between 001 and 200 comprising those of 
the fi rst and second page. Such a device is known as systematic random sam-
pling; the choice of starting point is random.

There are other devices which might be appropriate in specifi c circum-
stances. For example, to estimate the prevalence of menstrual fl ushing rather 
than sampling the national list containing millions of women, one may fi rst 
randomly choose one county from a list of counties, from within each county 
a sample of electoral wards, and then obtain only lists for these wards from 
which to select the women. Such a device is termed multi-stage random 
sampling.

In other circumstances one may wish to ensure that equal numbers of men 
and women are sampled. Thus the list is divided into strata (men and women) 
and equal numbers sampled from each stratum.



 

12.4 Questionnaire and form design
Purpose of questionnaires and forms

It is important to distinguish between questionnaires and forms. Forms are 
used largely to record factual information, such as a subject’s age, blood 
pressure or treatment group. They are commonly used in clinical trials to 
follow a patient’s progress and are often completed by the responsible inves-
tigator. For forms, the main requirement is that the form be clearly laid out 
and all investigators are familiar with it. A questionnaire on the other hand, 
although it too may include basic demographic information, can be regarded 
as an instrument in its own right. For example, it may try to measure personal 
attributes such as attitudes, emotional status or levels of pain and is often 
completed by the individual concerned.

For questionnaires the pragmatic advice is, if possible, do not design your 
own, use someone else’s! There are a number of reasons for this apparently 
negative advice. First, use of a standardised format means that results should 
be comparable between studies. Second, it is a diffi cult and time-consuming 
process to obtain a satisfactory questionnaire. Help with designing health 
measurement scales is given in Streiner and Norman (2003).

Types of questions

There are two major types of question: open or closed. In an open question 
respondents are asked to reply in their own words, whereas in a closed ques-
tion the possible responses are given.

The advantages of open type questions are that more detailed answers are 
possible. They give the responders the feeling that they can express their own 
ideas. On the other hand, they take more time and effort to complete and 
they can be diffi cult to code and hence analyse since there may be a wide 
variety of disparate responses from different individuals. Closed questions 
can be answered by simply circling or ticking responses. When constructing 
responses to closed questions it is important to provide a suitable range of 
replies, or the responder may object to being forced into a particular cate-
gory, and simply not answer the question. A useful strategy is to conduct a 
pilot study using open questions on a limited but representative sample of 
people. From their responses one can then devise suitable closed questions.

Another type of closed question is to make a statement and then ask 
whether the respondent agrees or disagrees. When a closed question has an 
odd number of responses, it is often called a Likert scale.

Some researchers prefer to omit central categories, such as ‘average’ or 
‘don’t know’ so as to force people to have an opinion. The danger is that if 
people do not wish to be forced, then they will simply not reply.
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An alternative method of recording strength of feeling is by means of a 
visual analogue score (VAS). The VAS is scored by measuring the distance 
of the respondent’s mark from the left-hand end of the scale.

Examples: Types of questions

Open question

‘Please describe how do you feel about the treatment you have just 
received?’

Closed question

‘How would you rate the treatment you have just received?’
(1) Excellent, (2) good, (3) average, (4) poor, (5) very poor.

Likert rating scales

‘Medical statistics is not very interesting’
(a)  Strongly agree, (b) agree, (c) don’t know, (d) disagree, (e) strongly 

disagree.

Visual analogue score

‘Please rate your pain by marking a line on the following scale:’

12.5 Cross-sectional surveys
A cross-sectional study describes a group of subjects at one particular point 
in time. It may feature the proportion of people with a particular character-
istic, which is a prevalence study. It may look at how the prevalence varies 
by other features such as by age or gender.

Suppose an investigator wishes to determine the prevalence of menstrual 
fl ushing in women in the ages 45–60. Then an appropriate design may be 
a survey of women in that age group by means of a postal questionnaire. 
In such a situation, this type of survey may be conducted at, for example, 
a town, county or national level. However, a prerequisite before such a 
survey is conducted is a list of women in the corresponding age groups. Once 
such a list is obtained it may be possible to send a postal questionnaire 
to all women on the list. More usually one may wish to draw a sample 



 

from the list and the questionnaire be sent to this sample. The sampling 
proportion will have to be chosen carefully. It is important that those who 
are selected be selected by an appropriate random sampling technique.

In some situations a visit by an interviewer to those included in the sample 
may be more appropriate. However, this may be costly both in time and 
money and will require the training of personnel. As a consequence this will 
usually involve a smaller sample than that possible by means of a postal 
questionnaire. On the other hand, response rates to postal questionnaires 
may be low. A low response rate can cause considerable diffi culty in 
interpretation of the results as it can always be argued (whether true or not) 
that non-responders are atypical with respect to the problem being investi-
gated and therefore estimates of prevalence, necessarily obtained from the 
responders only, will be inherently biased. Thus, in a well-designed survey, 
one makes every attempt to keep the numbers of non-responders to a 
minimum, and takes the potential response rate into account when estimat-
ing sample size.

Volunteers often present considerable problems in cross-sectional surveys. 
When the object of interest is a relationship within subjects, for example 
physiological responses to increasing doses of a drug, then one cannot avoid 
the use of volunteers. However, suppose one was interested in the prevalence 
of hypertension in the community. One approach would be to ask volunteers 
to come forward by advertising in the local newspaper. The diffi culty here is 
that people may volunteer simply because they are worried about their blood 
pressure (this is known as selection bias) and also there is no way one can 
ascertain the response rate, or investigate reasons why people did not volun-
teer. A better approach would be to take a random sample from the com-
munity, either from an electoral roll, general practitioners’ lists or a telephone 
list, and then invite each one individually to have their blood pressure 
measured. In that way the response rate is known and the non-responders 
identifi ed.

Market research organisations have complex sampling schemes that often 
contain elements of randomisation. However, in essence they are grab or 
convenience samples, in that only subjects who are available to the inter-
viewer can be questioned. So-called quota samples ensure that the sample is 
representative of the general population in say, age, gender and social class 
structure. Problems associated with the interpretation of quota samples are 
discussed in detail by Machin and Campbell (2005). They are not recom-
mended, in general, for use in medical research.

Other biases are possible in cross-sectional studies. Consider a cross-
 sectional study that reveals a negative association between height and age. 
Possible interpretations include: people shrink as they get older, younger 
generations are getting taller, or tall people have a higher mortality than 
short people!
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One of the differences between a cross-sectional study and other designs 
discussed in this chapter is that in the former subjects are included without 
reference to either their exposure or their disease. Cross-sectional studies 
usually deal with exposures that do not change, such as blood type or chronic 
smoking habit. However, in occupational studies a cross-sectional study 
might contain all workers in a factory, and their exposures determined by a 
retrospective work-history. Here the problem is the healthy worker effect in 
that people in work tend to be healthier than people not in work, even those 
in jobs which expose them to health hazards. A cross-sectional study resem-
bles a case–control study (to be discussed in Section 12.8) except that the 
numbers of cases are not known in advance, but are simply the prevalent 
cases at the time of the survey.

Example from the literature: Prevalence of Chlamydia

Macleod et al (2005) sent questionnaires to 19 773 people randomly 
selected from general practitioners lists and 14 382 were successfully con-
tacted (73%). They found the prevalence of Chlamydia to be 2.8%, (95% 
CI 2.2 to 3.4%) in men and 3.6% (3.1 to 4.9%) in women. They found 
people under the age of 25 had a higher prevalence (men 5.1%, women 
6.2%). The authors indicate that selection bias may have affected their 
observations as it is thought that people who know they have Chlamydia
may be less likely to respond.

12.6 Non-randomised studies
Pre-test/post-test studies

A pre-test/post-test study is one in which a group of individuals are measured, 
then subjected to an intervention, and then measured again. The purpose of 
the study is to observe the size of the resulting effect. The major problem is 
ascribing the change in the measurement to the intervention since other 
factors may also have changed in that interval.

Example from the literature: Before-and-after studies

Christie (1979) describes a consecutive series of patients admitted to a 
hospital with stroke in 1974 who were then followed prospectively until 
death and their survival time determined. Subsequently, a CT head scanner 
was installed in the hospital, and so in 1978 the study was repeated so that 
the scanner could be evaluated.



 

In the absence of the control study, the comparison of patients who had 
had no CT scan, the investigators may well have concluded that the installa-
tion of a CT head scanner had improved patient survival time. There are two 
possible explanations of the apparent anomaly. One is to suppose that other 
improvements in treatment, unrelated to CT scanning, had taken place 
between 1974 and 1978. The other is to ask what would a clinician do with a 
stroke patient even if he knew the outcome of a CT scan? The answer is, 
usually, very little. It is therefore possible that the patients in 1978 were, in 
fact, less seriously ill than those in 1974, despite the attempts at matching, 
and hence would live longer.

However, in certain circumstances before-and-after studies without control 
groups are unavoidable if the design is not in the direct control of the inves-
tigator. Such situations may arise when national policy legislates for a change, 
for example compulsory seat belt wearing, the value of which may still need 
to be evaluated.

Successive patients in the 1978 series who had had a CT scan were 
matched by age, diagnosis and level of consciousness with patients in the 
1974 series. A total of 29 matched pairs were obtained and their survival 
times compared. The results, given in Table 12.1, Column 2, appeared to 
show a marked improvement in the 1978 patients over those from 1974 
with 31% with better survival and only 7% worse. This was presumed to 
be due to the CT scanner.

However, the study was then extended to an analysis of the 1978 patients 
who had not had a CT scan (Table 12.1, Column 3) compared with a 
matched group of 89 patients from 1974 using the same matching criteria. 
This second study again found an improvement; with 38% of the 1978 
patients were doing better than the 1974 patients, and 19% doing 
worse. Taking the two components of the study together, then whether 
or not patients had received a CT scan, the outcome had improved over 
the years.

Table 12.1 Data from Christie (1979)

Survival CT scan in 1978

 Yes No

1978 better than 1974  9 (31%) 34 (38%)
1978 equal to 1974 18 (62%) 38 (43%)
1978 worse than 1974  2 (7%) 17 (19%)
 29 89
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Quasi-experimental designs

A prospective study that has both a test group and a control group, but 
in which the treatment is not allocated at random, is known as a quasi-
 experimental design. It is often used to take advantage of information on the 
merits of a new treatment which is being implemented in one group of 
patients, but where randomisation is diffi cult or impossible to implement.

The main disadvantage of a quasi-experimental study is that, because treat-
ments are not randomised to the subjects, it is impossible to state at the outset 
that the subjects are comparable in the two groups. Thus, for example, when 
comparing survival rates in patients undergoing different types of surgery, 
each performed by different surgeons, it is possible that different surgeons 
will have different selection thresholds of risk for admitting patients to surgery. 
As a consequence, any difference in mortality observed between types of 
surgical intervention may be clouded by systematic patient differences, and 
hence not refl ect the relative mortality of the surgical alternatives.

Example from the literature: Observational study – acute 
myocardial infarction

In June 2002 the town of Helena, Montana, USA imposed a law requiring 
smoke-free work places and public places but in December 2002 oppo-
nents won a court order suspending enforcement. Sargent et al (2004) 
found that there were 24 admissions to hospital for acute myocardial 
infarction in the 6 months of the smoking ban, compared with an average 
of 40 for the same six months in the years before and after the ban (dif-
ference 16 admissions, 95% CI 0.3 to 31.7). They concluded that the 
smoking ban may reduce morbidity from heart disease, which encouraged 
smoking bans in other areas.

Example from the literature: Quasi experimental study – cancer in 
Gulf War veterans

Macfarlane et al (2003) compared the incidence rates of cancer in UK 
service personnel who were deployed in the Gulf War of 1990 to the inci-
dence rate for service personnel not employed in the gulf war. They fol-
lowed up 51 721 Gulf War veterans for 11 years, and chose a control group 
of 50 755 personnel matched for age, gender, rank, service and level of 
fi tness. There were 270 incident cancers in those who went to the Gulf, 
compared with 269 in the control, an incidence rate ratio for all cancers 
of 0.99 (95% CI 0.83 to 1.17). It was concluded that there was no excess 
risk of cancer in Gulf war veterans.



 
12.7 Cohort studies
A cohort is a component of a population identifi ed so that its characteristics 
for example, causes of death or numbers contracting a certain disease can be 
ascertained as it ages through time.

The term ‘cohort’ is often used to describe those born during a particular 
year but can be extended to describe any designated group of persons who 
are traced over a period of time. Thus, for example, we may refer to a cohort 
born in 1950, or to a cohort of people who ever worked in a particular factory. 
A cohort study, which may also be referred to as a follow-up, longitudinal or 
prospective study, is one in which subsets of a defi ned population can be 
identifi ed who have been exposed (or will be exposed) to a factor which may 
infl uence the probability of occurrence of a given disease or other outcome. 
A study may follow two groups of subjects, one group exposed to a potential 
toxic hazard, the other not, to see if the exposure infl uences, for example, 
the occurrence of certain types of cancers. Cohort studies are usually con-
fi ned to studies determining and investigating aetiological factors, and do not 
allocate the equivalent of treatments. They are termed observational studies, 
since they simply observe the progress of individuals over time.

Design

The progress of a cohort study is described in Figure 12.1 and Table 12.2 
provides the corresponding notation. Thus members of the ‘without’ disease 
group are fi rst identifi ed (clearly those who already have the disease of inter-
est are not of concern here) and their ‘exposure’ status determined. They are 
then followed for a pre-specifi ed duration after which time their disease 
status (Present/Absent) is determined.

Relative risk From Table 12.2, the risk of developing the disease within the 
follow-up time is a/(a + c) for the exposed population and b/(b + d) for the 
unexposed population.

The relative risk (RR) is the ratio of these two, that is

RR
a a c
b b d

a b d
b a c

= +( )
+( )

= +( )
+( )

.

Clearly it is impossible to randomly choose whether people went to the 
Gulf or not, but there is no reason to suppose that people selected for 
Gulf service were at any different risk of cancer at the time than those not 
selected, when age, gender and other factors are controlled for.
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Figure 12.1 Defi nition and progress of a cohort study

Example from the literature: Cohort study – mortality in slate workers

Campbell et al (2005) studied a cohort of people living in towns in North 
Wales associated with slate mining. Over a period of 24 years they fol-
lowed up a group of men who worked or had worked with slate and a 
control group comprising men who had never been exposed to slate dust. 
The slate workers and controls were well matched for age and smoking 
habit. The results are given in Table 12.3.

The risk of death to slate-workers is 379/726 = 0.52 while that for the 
non-slate workers is 230/529 = 0.43, giving RR = 0.52/0.43 = 1.21 with 95% 
CI 1.07 to 1.36 (see Section 12.11).

In fact the published report took note of the actual survival times and 
so analysed this study using the survival techniques of Chapter 10. They
found a hazard ratio HR = 1.24, (95% CI 1.04 to 1.47, p = 0.015) and con-
cluded that exposure to slate increases a man’s risk of death at any point 
in time by about 25%.

It is useful to note that in this study the RR and HR are numerically close.

Table 12.2 Notation for a cohort study

Number of subjects who develop the Risk factor  Total
disease in the follow-up period

 Exposed Not exposed

Yes a b a + b
No c d c + d
Total a + c b + d N



 
The population attributable risk

If very few men were exposed to slate dust, the effect of slate exposure on 
the health of the population is not going to be large, however serious the 
consequences to the individual. The effect of a risk factor on community 
health is related to both relative risk and the percentage of the population 
exposed to the risk factor and this can be measured by the attributable risk 
(AR).

Attributal risk The terminology is not standard, but if IPopulation is the inci-
dence of a disease in the population and IExposed and INon-Exposed are the inci-
dence in the exposed and non-exposed respectively. Then the excess incidence 
attributable to the risk factor is simply IPopulation − INon-Exposed and the population 
attributable risk is

AR = (IPopulation − INon-Exposed)/IPopulation.

that is the proportion of the population risk that can be associated with the 
risk factor.

Some authors defi ne the excess risk (or absolute risk difference) as IExposed

− INon-Exposed and the population attributable risk as (IExposed − INon-Exposed)/
INon-Exposed, but the defi nition given above has the advantage of greater 
logical consistency.

If we defi ne, from Table 12.2, qExposed = (a + b)/N to be the proportion of 
the population of size N exposed to the risk factor, then it can be shown 
that

AR
RR

RR
=

−( )
+ −( )
θ

θ
Exposed

Exposed

1
1 1

.

The advantage of this formula is that it enables us to calculate the attribut-
able risk from the relative risk, and the proportion of the population exposed 
to the risk factor. Both of these can be estimated from cohort studies and 
also from case–control studies in certain circumstances when the controls are 
a random sample of the population.

Table 12.3 Results of a slate workers study

Outcome Exposure or risk factor – occupation

 Slate worker Non – slate worker

Died in follow-up period 379 230
Survived follow-up period 347 299
Total 726 529

From Campbell et al (2005). A 24 year cohort study of mortality in slate workers in North Wales. 
Journal of Occupational Medicine, 55, 448 – 453: by permission of Lippincott Williams & Wilkins, 
WoltersKluwer Health.
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Why quote a relative risk?

The relative risk provides a convenient summary of the outcome of a cohort 
study. It is in many cases independent of the incidence of the disease and so 
is more stable than the individual risks. For example, if we studied the effect 
of slate exposure on a different population of men, the death rate in the 
unexposed group may be different, say for illustration half that of the original 
population. The incidence or death rate in the exposed group is also likely 
to be half that of the fi rst group, and so the relative risk of slate exposure 
compared with non-exposure remains unaltered.

Also, it is often the case that if a factor, in addition to the principal 
one under study, acts independently on the disease process, then the joint 
relative risk is just the product of the two relative risks. Thus if smokers, 
had a relative risk of 2 of dying compared with non-smokers, then the 
risk of dying amongst smokers who are also exposed to slate is likely to 
be 2 × 1.2 = 2.4.

The interpretation of cohort studies is often that much more diffi cult 
than a randomised trial as bias may infl uence the measure of interest. 
For example, to determine in a cohort study if the rate of cardiovascular 
disease is raised in men sterilised by vasectomy, it is necessary to have 
a comparison group of non-vasectomised men. However, comparisons 
between these two groups of men may be biased as it is clearly not 
possible to randomise men to sterilisation or non-sterilisation groups. 
Men who are seeking sterilisation would certainly not accept the ‘no sterilisa-
tion’ option. Thus the comparison that will be made here is between those 
men who opt for sterilisation against those who do not, and there may 
be inherent biases present when comparisons are made between the two 
groups. For example, the vasectomised men may be fi tter or better educated 
than the non-vasectomised men and this may infl uence cardiovascular 
disease rates.

In the design of a cohort study, careful consideration before commence-
ment of the study must be taken to identify and subsequently measure im-
portant prognostic variables that may differ between the exposure groups. 
Provided they are recorded, differences in these baseline characteristics 
between groups can be adjusted for in the fi nal analysis.

Worked example: Attributable risk

Suppose the miners represented 5% of the population in the towns in 
North Wales where they lived, then AR = 0.05 × 0.21/(1 + 0.05 × 0.21) =
0.01, or about 1%. Thus one might conclude that slate mining increased 
overall mortality by about 1% in those towns.



 

Size of study

The required size of a cohort study depends not only on the size of the risk 
being investigated but also on the incidence of the particular condition under 
investigation. In the vasectomy example, cardiovascular events are not par-
ticularly rare among a cohort of men aged 40–50, and this may determine 
that the cohort of middle-aged men be investigated. On the other hand, if a 
rare condition were being investigated very few events would be observed 
amongst many thousands of subjects, whether exposed to the ‘insult’ of inter-
est or not. This usually prevents the use of cohort studies to investigate aetio-
logical factors in rare diseases.

Problems in interpretation of cohort studies

When the cohort is made up of employed individuals, the risk of dying in the 
fi rst few years of follow-up is generally less than that of the general population 
and so we have the ‘healthy worker’ effect. It is due to the fact that people 
who are sick are less likely to be employed. It is also known that people who 
respond to questionnaires are likely to be fi tter than those who do not. Both 
these effects can lead to problems in the interpretation of risks from popula-
tions of employed individuals. Another problem arises when follow-up is 
poor, or when it is more complete for the exposed group than for the unex-
posed group. We are then led to ask: Are the people lost to follow-up different 
in any way and could a poor follow-up bias the conclusions?

Post-marketing surveillance

Post-marketing surveillance is a particular type of cohort study carried out 
on a population of people receiving an established drug. In such an example 
a drug that is in routine use nationwide may be monitored; not for its effi cacy 
but for any untoward medical event happening to patients receiving the drug. 
The incidence of such adverse events with the new drug is then compared 
with the incidence in patients receiving alternatives to the new medicine.

12.8 Case–control studies
Design

A case–control study, also known as a case-referent study or retrospective 
study, starts with the identifi cation of persons with the disease (or other 
outcome variable) of interest, and a suitable control (reference) group of 
persons without the disease. The relationship of a risk factor to the disease 
is examined by comparing the diseased and non-diseased with regard to how 
frequently the risk factor is present. If the variable under consideration is 
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quantitative, the average levels of the risk factor in the cases and controls 
are utilised.

The design and progress of a case–control study is shown in Figure 12.2. 
Here we identify people with a disease and select a group of controls 
who do not have the disease. We then retrospectively determine whether, 
in the past, how much exposure to the risk factor of interest each group 
has had.

There are two possible variations in design. The control subjects can 
be chosen to match individual cases for certain important variables such 
as age and gender, leading to what is known as a matched design. Alterna-
tively, the controls can be a sample from a suitable non-diseased popula-
tion, leading to an unmatched design. It is a common misconception that 
there must be matching criteria in all case–control studies, but this is not 
so. However, it is important that the statistical analysis utilised refl ects the 
chosen design.

Unmatched study

As just indicated, in an unmatched design the controls can be a sample from 
a suitable non-diseased population and Table 12.4 gives the notation for this 
situation.

Table 12.4 Notation for an unmatched case– control study

Risk factor Cases (with disease) Controls (without disease)

Exposed a b
Not exposed c d
Total a + c b + d

Figure 12.2 Design and progress of a case–control study



 
We are interested in the relative risk of glioma in people who regularly 

use mobile phones. We cannot estimate it directly in a case–control study 
because, as discussed below, a case–control study is retrospective, and rela-
tive risk is measured in a prospective cohort study. Instead we calculate the 
odds ratio for exposure and disease (as defi ned in Chapter 2).

Odds ratio From Table 12.4, given that a subject has a disease, the odds of 
having been exposed are a/c; given that a subject does not have a disease, the 
odds of having been exposed are b/d. Then the odds ratio is

OR
a c
b d

ad
bc

= = .

An OR of unity means that cases are no more likely to be exposed to the 
risk factor than controls.

Example from the literature: Case–control study – mobile phone use 
and glioma

Hepworth et al (2006) describe a case–control study of mobile phone use 
and glioma. The cases were 966 people with diagnosed with a glioma 
between certain dates. The controls were randomly selected from general 
practitioner lists. Telephone use was defi ned as regular use for at least 6 
months in the period up to 1 year before diagnosis.

The controls were interviewed in exactly the same way as the cases, 
using a computer-assisted personal interview. The results of the study are 
summarised in Table 12.5.

Table 12.5 Results from a case–control study on glioma and 
mobile phone use (Hepworth et al, 2006)

Mobile phone use Cases Controls

Regular 508  898
Never/non-regular 456  818
Total 964 1716

Worked example: Odds ratio – mobile phone use and glioma

From Table 12.5 the odds ratio for mobile phone use and glioma is

OR = (508 × 818) /(456 × 898) = 1.01

The corresponding 95% CI is 0.87 to 1.19 (see Section 12.11). This shows 
that regular phone users are no more at risk of glioma than never or non-
regular users. As the confi dence interval is narrow we have good evidence 
that there is little or no effect as the null hypothesis value of OR = 1 is 
within this narrow interval.
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Matched studies

In some case–control studies each case is matched on an individual basis with 
a particular control. In this situation the analysis should take matching 
into account. The notation for a matched case–control study is given in 
Table 12.6.

In this situation we classify each of the N case–control pairs by exposure 
of the case and the control. An important point here is that the concordant 
pairs, that is, situations where the case and control are either both exposed 
or both not exposed, tell us nothing about the risk of exposure separately 
for cases or controls. Consider a situation where it was required to discrimi-
nate between two students in tests that resulted in either a simple pass 
or fail. If the students are given a variety of tests, in some they will both 
pass and in some they will both fail. However, it is only by the tests 
where one student passes and the other fails, that a decision as to who is 
better can be given.

The odds ratio for a matched case–control study is given by

OR = f/g.

The main purpose of matching is to permit the use of effi cient analy-
tical methods to control for confounding variables that might infl uence 
the case–control comparison. In addition it can lead to a clear identifi ca-
tion of appropriate controls. However, matching can be wasteful and 
costly if the matching criteria lead to many available controls being 
discarded because they fail the matching criteria. In fact if controls 
are too closely matched to their respective cases, the odds ratio may 
be underestimated. Usually it is worthwhile matching at best only one, or 
at most two or three, variables which are presumed or known to in-
fl uence outcome strongly, common variables being age, gender and social 
class.

Table 12.6 Notation for a matched case–control study

Cases Controls Total

 Exposed Not exposed 

Exposed e f a
Not exposed g h c
Total b d N



 
The odds ratio for a key worker on holiday as a risk for suicide is given by 

OR = 19/7 = 2.7, with 95% CI 1.09 to 7.64 (see Section 12.11) suggesting that 
this may be an important, albeit quite uncommon risk factor.

Analysis by matching?

In many case–control studies matching is not used with the control of bias or 
increase of precision of the odds ratio in mind, but merely as a convenient 
criterion for choosing controls. Thus for example, a control is often chosen 
to be of the same sex, of a similar age and with the same physician as the 
case for convenience. The question then arises whether one should take this 
matching into account in the analysis. The general rule is that the analysis 
should refl ect the design. Matched and unmatched analyses will give similar 
results if, in the notation of Table 12.6, f × g is close to e × h. This is clearly 
not the case in the suicide example of Table 12.7.

Selection of controls

The general principle in selecting controls is to select subjects who might have 
been cases in the study, and to select them independently of the exposure 

Example from the literature: Matched case–control study – suicide 
after discharge from a psychiatric hospital

King et al (2001) matched 293 people who committed suicide after being 
discharged from mental hospitals with people discharged from the same 
hospital at the same time who were alive on the day the case had died. 
One variable of interest was whether a key worker was on holiday at the 
time of the reference case’s death. The results are given in Table 12.7.

Table 12.7 Results of matched case–control study

Case Control

Key worker on Key worker on holiday?
holiday

 Yes No Total

Yes 0  19  19
No 7 267 274
Total 7 286 293

From King et al (2001). The Wessex Recent Inpatient Suicide Study: 
a case control study of 234 recently discharged psychiatric patient 
suicides. British Journal of Psychiatry, 178, 531–536: by permission of 
The Royal College of Psychiatrists.
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variable. Thus if the cases were all treated in one particular hospital the 
controls should represent people who, had they developed the disease, would 
also have gone to the same hospital. Note that this is not the same as select-
ing hospital controls (see the example below). Since a case–control study is 
designed to estimate relative, and not absolute, risks, it is not essential that 
the controls be representative of all those subjects without the disease, as has 
been sometimes suggested. It is also not correct to require that the control 
group be alike in every respect to the cases, apart from having the disease of 
interest. As an example of this ‘over-matching’ consider a study of oestrogens 
and endometrial cancer. The cases and controls were both drawn from women 
who had been evaluated by uterine dilatation and curettage. Such a control 
group is inappropriate because agents that cause one disease in an organ 
often cause other diseases or symptoms in that organ. In this case it is possible 
that oestrogens cause other diseases of the endometrium, which requires 
the women to have dilatation and curettage and so present as possible 
controls.

The choice of the appropriate control population is crucial to a correct 
interpretation of the results.

Confounding

Confounding arises when an association between an exposure and an outcome 
is being investigated, but the exposure and outcome are both strongly associ-
ated with a third variable. An extreme example of confounding is ‘Simpson’s
paradox’, when the third factor reverses the apparent association between 
the exposure and outcome.

Example from the literature: Simpson’s Paradox

As an illustration of Simpson’s paradox, Julious and Mullee (1994) give 
an example describing a cohort study of patients with diabetes which is 
shown in Table 12.8.

It would appear from the top panel of the table that a higher proportion 
of patients (40%) with non-insulin diabetes died, implying that non-insulin 
diabetes carried a higher risk of mortality. However, non-insulin diabetes 
usually develops after the age of 40. Indeed when the patients are split 
into those aged <40 years and those aged ≥40, it is found that in both age 
groups a smaller proportion of patients with non-insulin diabetes died 
compared with those with insulin diabetes (0% versus 1% and 41% versus 
46%). Thus as might be expected, in fact the insulin-dependent patients 
had the higher mortality.



 

Limitations of case–control studies

Ascertainment of exposure in case–control studies relies on previously 
recorded data or on memory, and it is diffi cult to ensure lack of bias between 
the cases and the controls. Since they are suffering a disease, cases are likely 
to be more motivated to recall possible risk factors. One of the major diffi cul-
ties with case–control studies is in the selection of a suitable control group, 
and this has often been a major source of criticism of published case–control
studies. This has led some investigators to regard them purely as a hypothe-
sis-generating tool, to be corroborated subsequently by a cohort study.

12.9 Association and causality
Once an association between a risk factor and disease has been identifi ed, a 
number of questions should be asked to try to strengthen the argument that 
the relationship is causal. These are known as the Bradford Hill criteria.

1. Consistency. Have other investigators and other studies in different popu-
lations led to similar conclusions?

2. Plausibility. Are the results biologically plausible? For example, if a risk 
factor is associated with cancer, are there known carcinogens in the risk 
factor?

3. Dose–response. Are subjects with a heavy exposure to the risk factor at 
greater risk of disease than those with only slight exposure?

Table 12.8 Simpson’s paradox

Vital status Insulin dependent

 No  Yes

Alive 326  253
Dead 218  105
Total 544  358
Percentage dead 40%  60%

Vital status Patients aged ≤ 40 Patients age >40
 Insulin dependent Insulin dependent

 No Yes No Yes

Alive 15 129 311 124
Dead  0   1 218 104
 15 130 529 228
Percentage dead 0% 1% 41% 46%

From Julious & Mullee (1994). Confounding and Simpson’s Paradox. British Medical Journal, 309,
1480–1481: reproduced by permission of the BMJ Publishing Group.
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4. Temporality. Does the disease incidence in a population increase or 
decrease following increasing or decreasing exposure to a risk factor? For 
example, lung cancer in women is increasing some years after the numbers 
of women taking up smoking increased.

5. Strength of the relationship. A large relative risk may be more convincing 
than a small one (even if the latter is statistically signifi cant). The diffi culty 
with statistical signifi cance is that it is a function of the sample size as well 
as the size of any possible effect. In any study where large numbers of 
groups are compared some statistically signifi cant differences are bound 
to occur.

6. Reversibility. If the putative cause is removed, the effect should diminish. 
For example lung cancer in men is diminishing, some time after the preva-
lence of smoking in men declined.

7. No other convincing explanations are available. For example, the result is 
not explained by confounding.

12.10 Points when reading the literature
1. In a cohort study, have a large percentage of the cohort been followed up, 

and have those lost to follow-up been described by their measurements at 
the start of the study?

2. How has the cohort been selected? Is the method of selection likely to 
infl uence the variables that are measured?

3. In a case–control study, are the cases likely to be typical of people with 
the disease? If the cases are not typical, how generalisable are the results 
likely to be?

4. In a matched case–control study, has allowance been made for matching 
in the analysis?

5. In any observational study, what are the possible biases? How have they 
been minimised and have the Bradford Hill criteria been considered?

12.11 Technical details
Confi dence interval for a relative risk

Given the notation of Table 12.1 the standard error of the log relative risk 
for large samples is given by

SE RR
a a c b b d

log( ) = −
+

+ −
+

⎛
⎝

⎞
⎠

1 1 1 1

The reason for computing the standard error on the logarithmic scale is 
that this is more likely to be Normally distributed than the RR itself. It is 



 

important to note that when transformed back to the original scale, the con-
fi dence interval so obtained will be asymmetric about the RR. There will be 
a shorter distance from the lower confi dence limit to the RR than from the 
RR to the upper confi dence limit.

Worked example

From the data of Table 12.3

SE RRlog . .( ) = − + −⎛
⎝

⎞
⎠ =1

379
1

726
1

230
1

529
0 061

Thus a 95% CI for log(RR) is 0.191 − 1.96 × 0.061 to 0.191 + 1.96 × 0.061 
or 0.071 to 0.310.

The corresponding 95%CI for the RR is 1 .07 to 1.36.

Worked example

For the data of Table 12.5, OR = 1.01 and so log OR = 0.01, while

SE ORlog . .( ) = + + + =1
537

1
534

1
639

1
622

0 083

This gives a 95% CI of −0.14 to 0.17.
The corresponding 95% CI for the OR is exp(−0.14) to exp(0.17) or 0.87 

to 1.19.

12.12 Exercises
1. What type of study is being described in each of the following 

situations?

(a)  All female patients over the age of 45 on a general practitioner’s list 
were sent a questionnaire asking whether they had had a cervical 
smear in the last year.
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CI for an odds ratio

Using the notation of Table 12.4 the standard error of the log OR, in large 
samples, is given by

SE OR
a b c d

log( ) = + + +1 1 1 1
.
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(b)  A group of male patients who had had a myocardial infarction (MI) 
were asked about their egg consumption in the previous month. A 
similar-sized group of males of the same age who had not had an MI 
were also asked about their egg consumption in the last month, to 
investigate whether egg consumption was a risk factor for MI.

(c) A secondary school’s records from 50 years previously were used to 
identify pupils who were active in sport and those who were not. These 
were traced to the present day, and if they had died, their death cer-
tifi cates were obtained to see whether the death rates were different 
in the two groups.

(d)  A new method of removing cataracts (phacoemulsifi cation) has 
been developed. Eye surgeons are randomised to receive training 
in the new technique immediately or after one year. The outcome of 
patients in the two groups is compared in the 6 months following 
randomisation.

(e)  A new centre for chiropractic opens in town. An investigator com-
pares the length of time off work after treatment for patients with 
back pain who attend the chiropractic centre and those who attend 
the local hospital physiotherapy centre over the same period.

2. Many observational studies have shown that women taking hormone 
replacement therapy (HRT) are at lower risk of heart disease. What biases 
might be involved in these conclusions?

3. Yates and James (2006) conducted a case–control study of students who 
struggled at medical school (dropped out or attended the academic 
progress committee). Over fi ve successive cohorts they identifi ed 123 
strugglers and for each struggler chose four controls at random from the 
same year group. They obtained 492 controls. They found that 61 of the 
strugglers were male compared with 168 of the controls. Obtain an odds 
ratio for struggling for males and a 95% confi dence interval.
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Summary

This chapter emphasises the importance of randomised clinical trials in evalu-
ating alternative treatments or interventions. The rationale for, and methods 
of, randomising patients are given. We delineate the ‘ABC’ of clinical trials: 
Allocation at random, Blindness and Control. The value of a study protocol 
is stressed. Different types of randomised trials, such as factorial, cluster and 
cross-over trials are described and we distinguish between those to estab-
lished superiority from those that seek equivalence. Checklists of points to 
consider when designing, analysing and reading the reports describing a clini-
cal trial are included. We also discuss the use of the summary statistic Number 
Needed to Treat (NNT).

13.1 Introduction
A clinical trial is defi ned as a prospective study to examine the relative effi -
cacy of treatments or interventions in human subjects. In many applications 
one of the treatments is a standard therapy (control) and the other a new 
therapy (test).

Even with well established and effective treatments it is well recognised 
that individual patients may react differently once these are administered. 
Thus aspirin will cure some with headache speedily whilst others will con-
tinue with their headache. The human body is a very complex organism, 
whose functioning is far from completely understood, and so it is not surpris-
ing that it is often diffi cult to predict the exact reaction that a diseased indi-
vidual will have to a particular therapy. Even though medical science might 
suggest that a new treatment is effi cacious, it is only when it is tried in practice 
that any realistic assessment of its effi cacy can be made and the presence of 
any adverse side-effects identifi ed. Thus it is necessary to do comparative 
trials to evaluate the new treatment against the current standard.

Although we are concerned with the use of statistics in all branches of 
medical activity, this chapter is focussed primarily on the randomised clinical 
trial because it has a central role in the development of new therapies. It 
should be emphasised, however, that randomised controlled trials are relevant 
to other areas of medical problems and not just therapeutic interventions; for 
example, in the evaluation of screening procedures, alternative strategies 
for health education and in the evaluation of contraceptive effi cacy.

13.2 Why randomise?
Randomisation

Randomisation is a procedure in which the assignment of a subject to the 
alternatives under investigation is decided by chance, so that the assignment 



 

cannot be predicted in advance. It is probably the most important innovation 
that statisticians have given to medical science. It was introduced in agricul-
ture by the founder of modern statistics, RA Fisher (1890–1962) and devel-
oped in medicine by Austin Bradford Hill (1897–1991). Chance could mean 
the toss of a coin, the draw of a card, or more recently a computer generated 
random number. The main point is that the investigator does not infl uence 
who gets which of the alternatives. It may seem a perverse method of allocat-
ing treatment to an ill person. In the early days of clinical trials, when treat-
ment was expensive and restricted, it could be justifi ed as being the only fair 
method of deciding who got treated and who did not. More recently it has 
been shown that it is the only method, both intellectually and practically, that 
can ensure there is no bias in the allocation process. In other methods an 
investigator has the potential, consciously or subconsciously, to bias the allo-
cation of treatments. Bitter experience has shown that other methods are 
easily subverted, so that, for example, sicker patients get the new treatment. 
It is important to distinguish random from haphazard or systematic alloca-
tion. A typical systematic allocation method is where the patients are assigned 
to test or control treatment alternately as they enter the clinic. The investiga-
tor might argue that the factors that determine precisely which subject enters 
the clinic at a given time are random and hence treatment allocation is also 
random. The problem here is that it is possible to predict which treatment 
the patients will receive as soon as or even before they are screened for eli-
gibility for the trial. This knowledge may then infl uence the investigator when 
determining which patients are admitted to the trial and which are not. This 
in turn may lead to bias in the fi nal treatment comparisons.

The main point of randomisation is that in the long run it will produce 
study groups comparable in unknown as well as known factors likely to infl u-
ence outcome apart from the actual treatment being given itself. Sometimes 
one can balance treatment arms for known prognostic factors (see Section 
13.3 on how to conduct randomisation). But suppose after the trial, it was 
revealed that (say) red-haired people did better on treatment. Randomisa-
tion will ensure that in a large trial, red-haired people would be equally rep-
resented in each arm. Of course, any trial will only be of fi nite size, and one 
would always be able to fi nd factors that don’t balance, but at least randomi-
sation enables the investigator to put ‘hand-on-heart’ and say that the design 
was as bias free as possible.

Randomisation also guarantees that the probabilities obtained from statis-
tical tests will be valid, although this is a rather technical point.

Random assignment and the protocol

The trial protocol will clearly defi ne the patient entry criteria for a particular 
trial. After the physician has determined that the patient is indeed eligible 
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for the study, there is one extra question to answer. This is: ‘Are each of the 
treatments under study appropriate for this particular patient?’ If the answer 
is ‘Yes’ the patient is then randomised. If ‘No’ the patient is not included in 
the trial and would receive treatment according to the discretion of the physi-
cian. It is important that the physician does not know, at this stage, which of 
the treatments the patient is going to receive if they are included in the trial. 
The randomisation list should therefore be prepared and held by separate 
members of the study team or distributed to the clinician in charge in sealed 
envelopes to be opened only once the patient is confi rmed as eligible for 
the trial.

The ethical justifi cation for a physician to randomise a patient in a clinical 
trial is his or her uncertainty as to the best treatment for the particular 
patient.

Historical controls

In certain circumstances, however, randomisation is not possible; one classic 
example is the fi rst studies involving heart transplantation and the subse-
quent survival experience of the patients. At that time, it would have been 
diffi cult to imagine randomising between heart transplantation and some 
other alternative, and so the best one could do in such circumstances was to 
compare survival time following transplant with previous patients suffering 
from the same condition when transplants were not available. Such patients 
are termed historical controls. A second possibility is to make comparisons 
with those in which a donor did not become available before patient death. 
There are diffi culties with either approach. One is that those with the most 
serious problems will die more quickly. The presence of any waiting time for 
a suitable donor implies only the less critical will survive this waiting time. 
This can clearly bias comparisons of survival experience in the transplanted 
and non-transplanted groups. For this reason one should interpret studies 
which use historical controls with care.

13.3 Methods of randomisation
Simple randomisation

The simplest randomisation device is a coin, which if tossed will land with a 
particular face upwards, with probability one-half. Thus, one way to assign 
treatments of patients at random would be to assign treatment A whenever 
a particular side of the coin turned up, and B when the obverse arises. An 
alternative might be to roll a six-sided die; if an even number falls A is given, 
if an odd number, B. Such procedures are termed simple randomisation. It 
is usual to generate the randomisation list in advance of recruiting the fi rst 



 

patient. This has several advantages: it removes the possibility of the physi-
cian not randomising properly; it will usually be more effi cient in that a list 
may be computer generated very quickly; it also allows some diffi culties with 
simple randomisation to be avoided.

To avoid the use of a coin or die for simple randomisation one can consult 
a table of random numbers such as Table T2. Although Table T2 is in fact 
computer generated, the table is similar to that which would result from 
throwing a 10-sided die, with faces marked 0 to 9, on successive occasions. 
The digits are grouped into blocks merely for ease of reading. The table is 
used by fi rst choosing a point of entry, perhaps with a pin, and deciding the 
direction of movement, for example along the rows or down the columns. 
Suppose the pin chooses the entry in the 10th row and 13th column and 
it had been decided to move along the rows; the fi rst 10 digits then give 
534 55 425 67; even numbers assigned to A and odd to B then generate 
BBA BBAAB AB. Thus of the fi rst 10 patients recruited four will receive 
A and 6 B.

Although simple randomisation gives equal probability for each patient to 
receive A or B it does not ensure, as indeed was the case with our example, 
that at the end of patient recruitment to the trial equal numbers of patients 
received A and B. In fact even in relatively large trials the discrepancy from 
the desired equal numbers of patients per treatment can be quite large. In 
small trials the discrepancy can be very serious perhaps, resulting in too few 
patients in one group to give acceptable statistical precision of the corre-
sponding treatment effect.

Blocked randomisation

To avoid such a problem, balanced or restricted randomisation techniques 
are used. In this case the allocation procedure is organised in such a way that 
equal numbers are allocated to A and B for every block of a certain number 
of patients. One method of doing this, say for successive blocks of four 
patients, is to generate all possible combinations but ignoring those, such as 
AAAB, with unequal allocation. The valid combinations are:

1 AABB 4 BABA
2 ABAB 5 BAAB
3 ABBA 6 BBAA

These combinations are then allocated the numbers 1 to 6 and the ran-
domisation table used to generate a sequence of digits. Suppose this sequence 
was 534 55 425 67 as before, then reading from left to right we generate the 
allocation BAAB ABBA BABA BAAB for the fi rst 16 patients. Such a 
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device ensures that for every four successive patients recruited balance 
between A and B is maintained. Should a 0, 7, 8 or 9 occur in the random 
sequence then these are ignored as there is no associated treatment combina-
tion in these cases. It is important that the investigating physician is not aware 
of the block size, otherwise he or she will come to know, as each block of 
patients nears completion, the next treatment to be allocated. This fore-
knowledge can introduce bias into the allocation process since the physician 
may subconsciously avoid allocating certain treatments for particular patients. 
Such a diffi culty can be avoided by changing the block size at random as 
recruitment continues.

In clinical trials which involve recruitment in several centres, it is usual to 
use a randomisation procedure for each centre to ensure balanced treatment 
allocation within centres. Another important use of this stratifi ed randomisa-
tion in clinical trials is if it is known that a particular patient characteristic 
may be an important prognostic indicator perhaps good or bad pathology 
then equal allocation of treatments within each prognostic group or strata 
may be desirable. This ensures that treatment comparisons can be made 
effi ciently, allowing for prognostic factors. Stratifi ed randomisation can be 
extended to more than one stratum, for example, centre and pathology, but 
it is not usually desirable to go beyond two strata.

One method that can balance a large number of strata is known as mini-
misation. One diffi culty with the method is that it requires details of all 
patients previously entered into the trial, before allocation can be made.

Carrying out randomisation

Once the randomised list is made, and it is usually best done by an impartial 
statistical team and not by the investigator determining patient eligibility, 
how is randomisation carried out? One simple way is to have it kept out of 
the clinic but with someone who can give the randomisation over the tele-
phone or electronically. The physician rings the number, gives the necessary 
patient details, perhaps confi rming the protocol entry criteria, and is told 
which treatment to give, or perhaps a code number of a drug package. Once 
determined, treatment should commence as soon as is practicable.

Another device, which is certainly more common in small-scale studies, is 
to prepare sequentially numbered sealed envelopes that contain the appro-
priate treatment. The attending physician opens the envelope only when they 
have decided the patient is eligible for the trial and consent has been obtained. 
The name of the patient is also written on the card containing the treatment 
allocation and the card returned to the principal investigator immediately. 
Any unused envelopes are also returned to the responsible statistical team 
once the recruitment to the trial is complete as a check on the randomisation 
process.



 

The above discussion has used the example of a randomised control trial com-
paring two treatments as this is the simplest example. The method extends 
relatively easily to more complex designs, however. For example, in the case of 
a 2 × 2 factorial design involving four treatments, the treatments, labelled A, B, 
C and D, could be allocated the pair of digits 0-1, 2-3, 4-5 and 6-7 respectively. 
The random sequence 534 55 425 67 would then generate CBC CCCBC DD; 
thus in the fi rst 10 patients none would receive A, two B, six C and two D. 
Balanced arrangements to give equal numbers of patients per group can be pro-
duced by fi rst generating the combinations for blocks of an appropriate size.

13.4 Design features
The need for a control group

In Chapter 12 we discussed the hazards of conducting ‘before-and-after’ type 
studies, in which physicians simply stop using the standard treatment and 
start using the new. In any situation in which a new therapy is under investi-
gation, one important question is whether it is any better than the currently 
best available for the particular condition. If the new therapy is indeed better 
then, all other considerations being equal, it would seem reasonable to give 
all future patients with the condition the new therapy. But how well are the 
patients doing with the current therapy? Once a therapy is in routine use it 
is not generally monitored to the same rigorous standards as it was during 
its development. So although the current best therapy may have been care-
fully tested many years prior to the proposed new study, changes in medical 
practice may have ensued in the interim. There may also be changes in 
patient characterisation or doctors’ attitudes to treatment. It could well be 
that some of these changes have infl uenced patient outcomes. The possibility 
of such changes makes it imperative that the new therapy be tested alongside 
the old. In addition, although there may be a presumption of improved effi -
cacy, the new therapy may turn out to be not as good as the old. It therefore 
becomes very important to re-determine the performance of the standard 
treatment under current conditions.

Treatment choice and follow-up

When designing a clinical trial it is important to have fi rm objectives in view 
and be sure that the therapeutic question concerned is of suffi cient impor-
tance to merit the undertaking. Thus, clearly different and well-defi ned alter-
native treatment regimens are required. The criteria for patient entry should 
be clear and measures of effi cacy should be pre-specifi ed and unambiguously 
determined for each patient. All patients entered into a trial and randomised 
to treatment should be followed up in the same manner, irrespective of 
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whether or not the treatment is continuing for that individual patient. Thus 
a patient who refuses a second injection in a drug study should be monitored 
as closely as one who agreed to the injection. From considerations of sample 
size (see Chapter 14) it is often preferable to compare at most two treatments, 
although, clearly, there are situations in which more than two can be evalu-
ated effi ciently.

Blind assessment

Just as the physician who determines eligibility to the study should be blind 
to the actual treatment that the patient would receive, any assessment of the 
patient should preferably be ‘blind’! Thus one should separate the assessment 
process from the treatment process if this is at all possible. To obtain an even 
more objective view of effi cacy it is desirable to have the patient ‘blind’ to 
which of the treatments he is receiving. It should be noted that if a placebo 
or standard drug is to be used in a double-blind trial, it should be packaged 
in exactly the same way as the test treatment. Clinical trials are concerned 
with real and not abstract situations so it is recognised that the ideal ‘blind’ 
situation may not be possible or even desirable in all circumstances. If there 
is a choice, however, the maximum degree of ‘blindness’ should be adhered 
to. In a ‘double-blind’ trial, in which neither the patient nor the physician 
know the treatment, careful monitoring is required since treatment-related 
adverse side-effects are a possibility in any trial and the attendant physician 
may need to be able to have immediate access to the actual treatment given 
should an emergency arise.

‘Pragmatic’ and ‘explanatory’ trials

One can draw a useful distinction between trials that aim to determine the 
exact pharmacological action of a drug (‘explanatory’ trials) and trials that 
aim to determine the effi cacy of a drug as used in day-to-day clinical practice 
(‘pragmatic’ trials). There are many factors besides lack of effi cacy that can 
interfere with the action of a drug; for example, if a drug is unpalatable, 
patients may not like its taste and therefore not take it.

Explanatory trials often require some measure of patient compliance, 
perhaps by means of blood samples, to determine whether the drug was actu-
ally taken by the patient. Such trials need to be conducted in tightly con-
trolled situations. Patients found not to have complied with the prescribed 
dose schedule may be excluded from analysis.

On the other hand, pragmatic trials lead to analysis by ‘intention to treat’ 
or ‘ITT’. Thus once patients are randomised to receive a particular treatment 
they are analysed as if they have received it, whether or not they did so in 
practice. This will refl ect the likely action of the drug in clinical practice, 



 

where even when a drug is prescribed there is no guarantee that the patient 
will take it. In general we would recommend that trials be analysed on an 
ITT basis although there are situations where a so-called ‘per protocol’ analy-
sis is best. For example, a trial in which blood levels of the drugs were also 
to be monitored where it is important that only those actually taking the 
drugs (rather than allocated to the drug and possibly not taking it) are used 
to summarise the profi les.

Superiority and equivalence trials

Implicit in a comparison between two treatments is the presumption that if 
the null hypothesis is rejected then there is a difference between the treat-
ments being compared. Thus one concludes that one treatment is ‘superior’ 
to the other irrespective of the magnitude of the difference observed. However 
in certain situations, a new therapy may bring certain advantages over the 
current standard, possibly in a reduced side-effects profi le, easier administra-
tion or cost but it may not be anticipated to be better with respect to the 
primary effi cacy variable. For example, if the treatments to compare are for 
an acute (but not serious) condition then perhaps a cheaper but not so effi ca-
cious (within quite wide limits) alternative to the standard may be acceptable. 
However, if the condition is life-threatening then the limits of ‘equivalence’ 
would be narrow as any advantages of the new approach must not be offset 
by an unacceptable increase in (say) death rate. Under such conditions, the 
new approach may be required to be at least ‘equivalent’ to the standard in 
relation to effi cacy if it is to replace it in future clinical use. This implies that 
‘equivalence’ is a pre-specifi ed maximum difference between treatments 
which, if observed to be less after the clinical trial is conducted, would render 
the two treatments equivalent.

One special form of equivalence trial is that termed a ‘non-inferiority’ trial. 
Here we only wish to be sure that one treatment is ‘not worse than’ or is ‘at least 
as good as’ another treatment: if it is better, that is fi ne (even though superiority 
would not be required to bring it into common use). All we need is to get con-
vincing evidence that the new treatment is not worse than the standard.

Design features of equivalence trials

• Decide on whether equivalence or non-inferiority is required;
• Decide the limits for equivalence or non-inferiority;
• Ensure very careful attention to detail in trial conduct especially patient 

compliance;
• Plan for a per protocol analysis.

Although analysis and interpretation can be quite straightforward, the 
design and management of equivalence trials is often much more complex. 
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In general, careless or inaccurate measurement, poor follow-up of patients, 
poor compliance with study procedures and medication all tend to bias results 
towards no difference between treatment groups. This implies that an ITT 
analysis is not likely to be appropriate since we are trying to offer evidence 
of equivalence, poor study design and logistical procedures may therefore 
actually help to hide treatment differences. In general, therefore, the quality 
of equivalence trials needs especially high compliance of the patients with 
respect to the treatment protocol.

Example: Non-inferiority – adjuvant treatment of post-menopausal 
women with early breast cancer

The ATAC Trialists’ Group (2002) conducted a three-group randomised 
trial of anastrozole (arimidex) (a), tamoxifen (t) and the combination (at)
in postmenopausal women with early breast cancer. The trial was designed 
to test two hypotheses. One was that that the combination (at) was supe-
rior to tamoxifen alone (t) and the second that anastrozole (a) was either 
non-inferior or superior to tamoxifen alone (t). This latter comparison 
comprises the ‘equivalence’ component to the trial.

The trial report quotes: ‘Disease-free survival at 3 years was 89.4% on 
anastrozole and 87.4% on tamoxifen (hazard ratio 0.83 [95% CI 0.71 to 0.96] 
p = 0.013).’ Thus with a better disease-free survival (DFS) at 3 years there 
was no evidence of inferiority with anastrozole as compared to tamoxifen. 
One can be confi dent of non-inferiority but this does not imply a conclusion 
of superiority even though the 3-year DFS rate is higher by 2.0%.

13.5 Design options
Parallel designs

In a parallel design, one group receives the test treatment, and one group the 
control as represented in Figure 13.1.

Example from the literature: Parallel group trial – patient consultations

Thomas (1987) randomly allocated patients who consulted him for minor 
illnesses to either a ‘positive’ or a ‘negative’ consultation. After two weeks 
he found that 64% of those receiving a positive consultation got better 
compared with only 39% of those who received a negative consultation, 
despite the fact that each group got the same amount of medication! Sta-
tistical analysis was used to show that these differences were unlikely to 
have arisen by chance. The conclusion was therefore that a patient who 
received a positive consultation was more likely to get better.



 

Cross-over designs

In a cross-over design the subjects receive both the test and the control treat-
ments in a randomised order. This contrasts with the parallel group design 
in that each subject now provides an estimate of the difference between test 
and control. Situations where cross-over trials may be useful are in chronic 
diseases that remain stable over long periods of time, such as diabetes or 
arthritis, where the purpose of the treatment is palliation and not cure. The 
two-period cross-over design is described in Figure 13.2.

Figure 13.1 Stages of a parallel two group randomised controlled trial

Example from the literature: Cross-over trial – non-insulin 
dependent diabetes

Scott et al (1984) conducted a trial of Acarbose or placebo (an inactive 
treatment) in non-insulin dependent diabetics. After a 2-week run-in 
period to allow patients to become familiar with details of the trial, 18 
patients were allocated by random draw (a method not recommended) to 
either Acarbose or placebo tablets. After 1 month individuals were crossed 
over to the alternative tablet, for a further month. In the fi nal week of 
each of the 1-month treatment periods the percentage glycosolated hae-
moglobin (HbA1%) was measured.

The difference between HbA1% levels after placebo and Acarbose was 
calculated for each patient. The average difference was 0.3% with stan-
dard deviation of 0.5% indicating an effect of moderate size of Acarbose 
over placebo of 0.3/0.5 = 0.6.
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The two-period, two-treatment (2 × 2) cross-over trial has the advantage 
over a parallel group design testing the same hypothesis in that, because 
subjects act as their own controls, the number of subjects required is consid-
erably less.

There are, however, a number of problems. One diffi culty with cross-over 
designs is the possibility that the effect of the particular treatment used in 
the fi rst period will carry over to the second period. This may then interfere 
with how the treatment scheduled for the second period will act, and thus 
affect the fi nal comparison between the two treatments (the carry-over 
effect). To allow for this possibility, a washout period, in which no treatment 
is given, should be included between successive treatment periods. Other 
diffi culties are that the disease may not remain stable over the trial period, 
and that because of the extended treatment period, more subject drop-outs 
will occur than in a parallel group design.

A cross-over study results in a paired (or matched) analysis. It is incorrect 
to analyse the trial ignoring this pairing, as that analysis fails to use all the 
information in the study design.

Cluster randomised trials

In some cases, because of the nature of the intervention planned, it may be 
impossible to randomise on an individual subject basis in a trial. Thus an 
investigator may have to randomise communities to test out different types 
of health promotion or different types of vaccine, when problems of contami-

Figure 13.2 Stages of a two group two period cross-over randomised controlled trial



 

nation or logistics, respectively, mean that it is better to randomise a group 
rather than an individual. Alternatively, one may wish to test different ways 
of counselling patients, and it would be impossible for a health professional 
once trained to a new approach to then switch methods for different patients 
following randomisation. For example, 10 health professionals may be 
involved and these are then randomised, fi ve to each group, to be trained or 
not in new counselling techniques. The professionals each then recruit a 
number of patients who form the corresponding cluster all receiving counsel-
ling according to the training (or not) of their health professional. The sim-
plest way to analyse these studies is by group, rather than on an individual 
subject basis.

Example from the literature: Cluster design – diabetes

Kinmonth et al (1998) describe a trial of ‘patient-centred care’ in newly 
diagnosed patients with diabetes. Forty-one primary care practices were 
randomised to receive either a 3-day course in this new patient-centred 
method, or only the Diabetic Association guidelines. The outcome mea-
sures were the individual patient body-mass indices and HbA1c levels 
after 1 year. In this case it was impossible for a general practitioner to 
revert to old methods of patient care after having received the training, 
and so a cluster design was chosen with the general practitioner as the unit 
of randomisation.
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Factorial trials

A factorial trial is used to evaluate two or more interventions simultaneously. 
Note that a factorial trial is not a study which merely balances prognostic 
factors, such as age or gender, but which are not interventions, as has been 
stated in several textbooks!

Example from the literature: 2 ¥ 2 factorial design – breast 
self examination

McMaster et al (1985) describe a randomised trial to evaluate breast self-
examination teaching materials. Four different experimental conditions 
were evaluated in health centre waiting rooms in which women were 
waiting to see their general practitioner. These were:

(A) No leafl ets or tape/slide programme available (control)
(B) Leafl ets displayed
(C) Tape/slide programme
(D) Leafl ets displayed and tape/slide programme
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In general the treatments in a factorial design are known as factors and 
usually they are applied at only one level, that is, a particular factor is either 
present or absent. For example, one factor may be radiotherapy for patients 
with a certain cancer and the options are to give or not give. Factorial designs 
are useful in two situations: fi rst the clinician may believe that the two treat-
ments together will produce an effect that is over and above that anticipated 
by adding the effects of the two treatments separately (synergy), and is often 
expressed statistically as an interaction. Alternatively, the clinician may 
believe that an interaction is most unlikely. In this case, one requires fewer 
patients to examine the effects of the two treatments, than the combined 
number of patients from two separate parallel group trials, each one examin-
ing the effect of one of the treatments.

The use of this 2 × 2 factorial design enabled two questions to be asked 
simultaneously. Thus, groups A and B versus C and D measured the value 
of the tape/slide programme while groups A and C versus B and D measured 
the value of the leafl ets.

13.6 Meta-analysis
In many circumstances randomised trials have been conducted that are unre-
alistically small, some unnecessarily replicated while others have not been 
published as their results have not been considered of interest. It has now 
been recognised that to obtain the best current evidence with respect to a 
particular therapy that all pertinent clinical trial information needs to be 
obtained, and if circumstances permit, the overview is completed by a formal 
combination of all the trials by means of a (statistical) meta-analysis of all 
the trial data. This recognition has led to the Cochrane Collaboration and a 
worldwide network of overview groups addressing numerous therapeutic 
questions (Chalmers et al 1993). In certain situations this has brought defi ni-
tive statements with respect to a particular therapy. For others it has lead to 
the launch of a large-scale confi rmatory trial.

Although it is not appropriate to review the methodology here, it is clear 
that the ‘overview’ process has led to many changes to the way in which 
clinical trial programmes have developed. They have provided the basic 
information required in planning new trials, impacted on an appropriate trial 
size (see Chapter 14), publication policy and very importantly raised report-
ing standards. They are an integral part of evidence-based medicine and are 

Here the two types of treatment are leafl ets and the tape/slide pro-
gramme. The evaluation of the four experimental conditions was conducted 
on four weekdays (Monday to Thursday) for 4 weeks. In order to eliminate 
bias, a Latin square experimental procedure was employed, in which each 
experimental condition was evaluated on each of the four weekdays.



 

impacting directly on decisions that affect patient care and questioning con-
ventional wisdom in many areas.

13.7 The protocol
The protocol is a formal document specifying how the trial is to be conducted. 
It will usually be necessary to write a protocol if the investigator is going to 
submit the trial to a grant-giving body for support and/or to an ethical com-
mittee for approval. However, there are also good practical reasons why one 
should be prepared in any case. The protocol provides the reference docu-
ment for clinicians entering patients into clinical trials. Furthermore some 
medical journals insist that every trial they consider for publication should 
be pre registered (and before patent entry) with an appropriate body.

The main content requirements of a study protocol are:

 1. Introduction, background and general aims. This would describe the 
justifi cation for the trial and, for example, the expected pharmacological 
action of the drug under test and its possible side-effects.

 2. Specifi c objectives. This should describe the main hypothesis or hypoth-
eses being tested. For example, the new drug may be required to achieve 
longer survival than the standard suffi cient to offset the possibly more 
severe side-effects.

 3. Patient selection. Suitable patients need to be clearly identifi ed. It is 
important to stress that all treatments under test must be appropriate for 
the patients recruited.

 4. Personnel and roles. The personnel who have overall responsibility for 
the trial and who have the day-to-day responsibility for the patient man-
agement have to be identifi ed. The respective roles of physician, surgeon, 
radiotherapist, oncologist and pathologist may have to be clarifi ed and 
organised in a trial concerned with a new treatment for cancer. The 
individual responsible for the coordination of the data will need to be 
specifi ed.

 5. Adverse events. Clear note should be made of who to contact in the case 
of a clinical emergency and arrangements made for the monitoring of 
adverse events.

 6. Trial design and randomisation. A brief description of the essential fea-
tures of the design of the trial should be included preferably with a 
diagram (such as Figures 13.1 and 13.2). It is useful also to include an 
indication of the time of visits for treatment, assessment and follow-up 
of the patients. There should also be a clear statement of how randomisa-
tion is carried out.

 7. Trial observations and assessments. Details of the necessary observations 
and their timing need to be provided. The main outcome variables should 
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be identifi ed so that the clinician involved can ensure that these are 
assessed in each patient.

 8. Treatment schedules. Clear and unambiguous descriptions of the actual 
treatment schedules need to be provided. These could be very simple 
instructions in the case of prescribing a new antibiotic for otitis media, 
or be very complex in a chemotherapy regimen for osteosarcoma.

 9. Trial supplies. It is clearly important that there be suffi cient supplies of 
the new drug available and that those responsible for dispensing the drug 
and other supplies are identifi ed.

10. Patient consent. The method of obtaining patient consent should be 
summarised and, if appropriate, a suggested consent form included.

11. Required size of study. The anticipated treatment effect, the test size and 
power (see Chapter 14) should be specifi ed and the number of patients 
that need to be recruited estimated. It is often useful to include an esti-
mate of the patient accrual rate.

12. Forms and data handling. Details of how the data are to be recorded 
should be provided. It is usual for a copy of the data forms to be attached 
to the protocol.

13. Statistical analysis. This would give a brief description of how the data 
are to be analysed. It would include the tests that are to be used and 
whether one- or two-sided comparisons are to be utilised.

14. Protocol deviations. Treatment details are required for patients who 
deviate from or refuse the protocol therapy. Clearly, a particular therapy 
may be refused by a patient during the course of the trial so alternative 
treatment schedules may be suggested. This section may also describe 
dose modifi cations permitted within the protocol which are dependent 
on patient response or the appearance of some side-effect.

13.8 Checklists for design, analysis and reporting
A guide to the useful points to look for when considering a new trial is given 
by checklists such as those of Gardner et al (2000). Although these lists were 
developed primarily for assessing the quality of manuscripts submitted for 
publication, each contain items that cover aspects worthy of consideration at 
the planning stage of a trial.

Design

The main consideration here is that should the design not be suitable to 
answer the trial questions(s) posed no amount of ‘statistical juggling’ at the 
analysis stage can correct any basic faults. For example, if a cross-over trial 
design is used without an adequate washout period then this cannot be 



 

rectifi ed by the analysis. A major consideration at the planning stage is 
whether there is a reasonable expectation that suffi cient patients can be 
recruited to the proposed trial. Most of the points covered here should be 
clearly answered in the protocol but many of these may not be made so 
explicit in any subsequent publication.

Checklist of design features

 1. Are the trial objectives clearly formulated?
 2. Are the diagnostic criteria for entry to the trial clear?
 3. Is there a reliable supply of patients?
 4. Are the treatments (or interventions) well defi ned?
 5. Is the method and reason for randomisation well understood?
 6. Is the treatment planned to commence immediately following 

randomisation?
 7. Is the maximum degree of blindness being used?
 8. Are the outcome measures appropriate and clearly defi ned?
 9. How has the study size been justifi ed?
10. What arrangements have been made for collecting, recording and analy-

sis of the data?
11. Has appropriate follow-up of the patients been organised?
12. Are important prognostic variables recorded?
13. Are side-effects of treatment anticipated?
14. Are many patient drop-outs anticipated?

Analysis and presentation

Provided a good design is chosen, then once completed the statistical analysis 
may be relatively straightforward and will have been anticipated at the plan-
ning stage. However, there are always nuances and unexpected features 
associated with data generated from every clinical trial that will demand 
careful detail at the analysis stage. Perhaps there are more missing values 
than anticipated, or many more censored survival observations through 
patient loss in one group than the other, or many of the assumptions made 
at the design stage have not been realised. In contrast to the choice of a poor 
design, a poor analysis can be rescued by a second look at the same data 
although this necessity will be wasteful of time and resource and delay dis-
semination of the ‘true’ trial results.

In many situations, the fi nal trial report published in the medical literature 
can only concentrate on the main features and there may be a limit on the 
detail which can be presented. This may lead to diffi cult choices of exactly 
what to present. However, guidance for the ‘key’ features should be in the 
trial protocol itself.

 13.8 CHECKLISTS FOR DESIGN, ANALYSIS AND REPORTING 257



 

258 THE RANDOMISED CONTROLLED TRIAL

Checklist for analysis and presentation

1. Are the statistical procedures used adequately described or referenced?
2. Are the statistical procedures appropriate?
3. Have the potential prognostic variables been adequately considered?
4. Is the statistical presentation satisfactory?
5. Are any graphs clear and the axes appropriately labelled?
6. Are confi dence intervals given for the main results?
7. Are the conclusions drawn from the statistical analysis justifi ed?

CONSORT

It is widely recognised that randomised controlled trials are the only reliable 
way to compare the effectiveness of different therapies. It is thus essential 
that randomised trials be well designed and conducted, and it is also impor-
tant that they be reported adequately. In particular, readers of trial reports 
should not have to infer what was probably done – they should be told explic-
itly. To facilitate this, the CONSORT statement of Altman et al (2001) has 
been published and includes a list of 22 items which should be covered in any 
trial report and a suggested fl ow chart to describe the patient progress through 
the trial. The checklist applies principally to trials with two parallel groups. 
Some modifi cation is needed for other situations, such as cross-over trials 
and those with more than two treatment groups.

In essence the requirement is that authors should provide enough informa-
tion for readers to know how the trial was performed so that they can judge 
whether the fi ndings are likely to be reliable.

The CONSORT recommendations have been adopted by many of the 
major clinical journals, and together with the use of checklists similar to those 
above, these will impact on the design and conduct of future trials by increas-
ing awareness of the requirements for a good trial.

13.9 Number needed to treat (NNT)
A summary measure which is sometimes used to present the results of a 
clinical trial is the number needed to treat (NNT). The NNT is derived by 
supposing the proportions of subjects having a success on the Test and 
Control groups are pTest and pControl. Then, if we treat n patients with Test and 
n patients with Control group, then we would expect npTest successes in 
the Test group and npControl in the Control. If we had just 1 extra success 
with the Test over the Control group then npTest − npControl = 1. From this 
the number treated in each group in order to obtain one extra success is 
n = 1/( pIest − pControl). We call this the NNT, thus



 

NNT
p p

=
−

1

Test Control
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The vertical straight brackets mean take the absolute value of ( pIest − pControl),
that is, ignore whether the difference is positive or negative. The value 
obtained in the calculation is rounded to the nearest whole number above.

Example from the literature

Sackett et al (1997) show that the use of anti-hypertensive drugs to prevent 
death, stroke or myocardial infarction over 1.5 years in patients with a 
diastolic blood pressure between 115 and 129 mmHg has an NNT of 3. 
However, the use of the same drugs in patients with a diastolic blood pres-
sure between 90 and 109 mmHg with the same outcome over 5.5 years has 
an NNT of 128.

Example from the literature: NNT – labour in water

Table 2.8 contained results from a trial by Cluett et al (2004) to test the 
value of labour in water and the outcome was need for an epidural anaes-
thetic. The proportions not needing epidurals were 26/49 = 0.53 and 17/50 
= 0.34 for the Test and Control groups respectively. Thus the difference 
in these proportions that favours labour in water is 0.53 − 0.34 = 0.19. Thus 
NNT = 1/0.19 = 5.26 or 6 to the nearest whole number above. Thus we 
would need to treat six patients with a labour in water and six in the 
control, to expect one fewer woman in labour to need an epidural 
anaesthetic.

13.10 Points when reading the literature
1. Go through the checklists described in Section 13.8.
2. Check whether the trial is indeed truly randomised. Alternate patient 

allocation to treatments is not randomised allocation.
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This illustrates one of the problems of the NNT; namely that it depends 
on the baseline incidence. A treatment with the same relative risk reduction 
will have vastly different NNTs in populations with differing baseline rates.

It is also possible to calculate a confi dence interval for an NNT, but this 
is diffi cult to understand when the treatments are not statistically signifi -
cantly different, and we recommend confi dence intervals for the difference 
(pIest − pControl) instead.
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3. Check the diagnostic criteria for patient entry. Many treatments are tested 
in a restricted group of patients even though they could then be prescribed 
for other groups. For example, one exclusion criterion for trials of non-
steroidal anti-infl ammatory drugs (NSAIDs) is often extreme age, yet the 
drugs once evaluated are often prescribed for elderly patients.

4. Was the analysis conducted by ‘intention to treat’ or ‘per protocol’?
5. Is the actual size of the treatment effect reported, and the associated con-

fi dence interval reported?
6. Does the Abstract correctly report what was found in the paper?
7. Have the CONSORT suggestions been followed?

13.11 Exercises
The authors of this book have been involved in the design of many clinical 
trials. We suggest, as an exercise for the reader in judging how well we as 
authors but into practice what we have advocated in this chapter, that some 
of our papers are subjected to critical appraisal in a systematic way. Some 
are published before the CONSORT statement and some after and so one 
might judge whether reporting on our part has improved.
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Summary

We cover the rationale for sample size calculations. Calculations when the 
objective is to estimate a prevalence, or to compare two groups with binary 
or continuous outcomes are described.

14.1 Introduction
Why sample size calculations?

There are a number of reasons for requiring investigators to perform a 
power-based sample size calculation before the start of a study. A study that 
is too small may be unethical, since it subjects people to procedures that may 
turn out to be of no value, if the study is not powerful enough to demonstrate 
a worthwhile difference. Similarly, a study that is too large may also be 
unethical since one may be giving people a treatment that could already have 
been proven to be inferior. On more pragmatic grounds, funding agencies 
will require a sample size estimate since the cost of a study is usually directly 
proportional to the size, and the agency will want to know that its money is 
well spent. Many journals now have checklists that include a question on 
whether a sample size is included (and to be reassured that is was carried out 
before the study and not in retrospect!). For example, the statistical guide-
lines for the British Medical Journal in Altman et al (2000) state that: ‘Authors 
should include information on  .  .  .  the number of subjects studied and why 
that number of subjects was used.’ Such a question often forms part of mea-
sures of quality of papers.

Why not sample size calculations?

A cynic once said that sample size calculations are a guess masquerading as 
mathematics. To perform such a calculation we often need information on 
factors such as the standard deviation of the outcome which may not be 
available. Moreover the calculations are quite sensitive to some of these 
assumptions.

One could argue that any study, whatever the size, contributes informa-
tion, and therefore could be worthwhile and several small studies, pooled 
together in a meta-analysis are more generalisable than one big study. Rarely 
is a single study going to answer a clinically important question. Often, the 
size of studies is determined by practicalities, such as the number of available 
patients, resources, time and the level of fi nance available. Finally, studies, 
including clinical trials, often have several outcomes, such as benefi t and 
adverse events, each of which will require a different sample size and yet 
sample size calculations are focussed on one outcome.



 

Summing up

Our experience is that sample size calculations are invaluable in forcing the 
investigator to think about a number of issues before the study commences. 
The mere fact of the calculation of a sample size means that a number of 
fundamental issues have been thought about: (i) What is the main outcome 
variable and when it is to be measured? (ii) What is the size of effect judged 
clinically important? (iii) What is the method and frequency of data analysis? 
Some medical journals now require protocols to be lodged in advance of the 
study being conducted, and it can be instructive to see whether the outcomes 
reported in a paper coincide with those highlighted in the protocol. A study 
may declare two treatments equivalent, but a glance at the protocol may 
show that the confi dence interval for the difference includes values deemed 
clinically important prior to the study.

An investigator should not expect a single number carved in stone, from 
a medical statistician, rather the statistician can supply two answers. First, 
whether the study is worth attempting, given the time and resources avail-
able. Second, a range of numbers which would indicate what size sample 
would be required under different scenarios.

It is important to know that the number of patients required depends on 
the type of summary statistic being utilised. In general, studies in which the 
outcome data are continuous and can be summarised by a mean require 
fewer patients than those in which the response can be assessed only as either 
a success or failure. Survival time studies (see Chapter 10) often require 
fewer events to be observed than those in which the endpoint is ‘alive’ or 
‘dead’ at some fi xed time after allocation to treatment.

14.2 Study size
In statistical terms the objective of any medical study is to estimate from a 
sample the corresponding population parameter or parameters. Thus if we 
were concerned with blood pressure measurements, the corresponding popu-
lation mean is m which is estimated by x, whereas if we were concerned with 
the response rate to a drug the population parameter is π which we estimate 
by p. When planning a study, we clearly do not know the population values 
and neither do we have the corresponding estimates. However, what we do 
need is some idea of the anticipated values that the population parameters 
may take. We denote these with the subscript ‘Plan’ in what follows. These 
anticipated values need to be derived from detailed discussions within the 
design team by extracting relevant information from the medical literature 
and their own experience. In some cases, the team may be reasonably confi -
dent in their knowledge while in other circumstances the plan values may be 
very tentative.
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For illustrative purposes, we will assume we are planning a two group 
randomised trial of Test (T) versus Control (C) and we consider the situa-
tions of continuous (say blood pressure) and binary (response rate) out-
comes. In which case the main parameter of interest is the true difference in 
effi cacy of the treatments, d, which we anticipate to be dPlan.

The appropriate number of patients to be recruited to a study is dependent 
on four components, each of which requires careful consideration by the 
investigating team.

Fundamental ingredients for a sample size calculation:

1. Type I error rate a
2. Type II error rate b
3.   (i)  For continuous outcomes – anticipated standard deviation of the 

outcome measure, sPlan

(ii)  For binary outcomes – proportion of events anticipated in the control 
group pPlan, C

4.   (i)  For continuous outcomes, anticipated effect size dPlan = mPlan,T −
mPlan,C

(ii)  For binary outcomes, anticipated effect size dPlan = pPlan,T − pPlan, C.

Type I and Type II error rates

In Chapter 7 we discussed the defi nition of Type I and Type II errors. The 
error rates are usually denoted by a and b and are the false positive and 
false negative error rates respectively. We have argued earlier against, and 
it is worth repeating, the rigid use of statistical signifi cance tests. Thus we 
have discouraged the use of statements such as: ‘The null hypothesis is 
rejected p-value <0.05’, or worse, ‘We accept the null hypothesis p-value
>0.05’. However, in calculating sample size it is convenient to think in terms 
of a signifi cance test and to specify the test size a in advance. It is conven-
tional to set a = 0.05. We also require is the acceptable false negative or 
Type II error rate, b, that is judged to be reasonable. This is the probability 
of not rejecting the null hypothesis of no difference between treatments, 
when the anticipated benefi t in fact exists. The power of the study is defi ned 
by 1 − b, which is the probability of rejecting the null hypothesis when it is 
indeed false. Experience of others suggests that in practice the Type II error 
rate is often set at a maximum value of b = 0.2 (20%). More usually this is 
alternatively expressed as setting the minimum power of the test as 1 − b =
0.8 (80%). Why is the allowable Type I error (0.05) less than the Type II 
error (0.20) error? Investigators are innately conservative. They would 
prefer to accept an established treatment against the evidence that a new 



 

treatment is better, rather than risk going over to a new treatment, will all 
its possible attendant problems such as long-term side effects, and different 
procedures.

Standard deviation of the outcome measure

For continuous data is it necessary to specify the standard deviation of the 
outcome measure, sPlan. This may be obtained from previous studies that used 
this measure. Note that we need the standard deviation, not the standard 
error, and that it is the standard deviation of the outcome measure, not the 
difference in outcome measure between intervention and control. When 
comparing two treatments, as here, it is commonly assumed that the standard 
deviation is the same in the two groups.
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Tips on fi nding the anticipated standard deviation of an estimate. Often 
papers only give estimate of an effect with a 95% CI.

We need the standard deviation, SD.

• Let U be upper limit of the CI and L the lower limit.
• Use the fact that U − L is about 4 times the standard error, SE.
• Use the fact that SE = SD/ n  to obtain SD = SE × n.

Control group response

For binary data it is necessary to postulate the response of patients to the 
control or standard therapy. As already indicated, we denote this by pPlan,C

to distinguish it from the value that will be obtained from the trial, denoted 
pC. Experience of other patients with the particular disease or the medical 
literature may provide a reasonably precise value for this fi gure in many 
circumstances.

The (anticipated) effect size

The effect size is the most important variable in sample size calculations. It 
sometimes called the anticipated benefi t, but is generally considered the size 
of an effect that would make it worthwhile adopting the new treatment to 
replace the old. Thus for a binary outcome we must postulate the size of the 
anticipated response in patients receiving the new treatment, which we denote 
by pPlan,T. Thus one might know that approximately 40% of patients are likely 
to respond to the control therapy, and if this could be improved to 50% by 
the new therapy then a clinically worthwhile benefi t would have been 
demonstrated. Thus the anticipated benefi t or effect size dPlan = pPlan,T − pPlan,C

= 0.1 (10%). Of course it is not yet known if the new therapy will have such 
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benefi t, but the study should be planned so that if such an advantage does 
exist there will be a good chance of detecting it.

Relationship between type I error, type II error and effect size

The distribution of the population mean difference, d, under the null and 
alternative hypotheses is given in Figure 14.1.

Suppose the outcome is continuous and we look at the difference in mean 
values between the treatment and control arms. Figure 14.1 shows the 
expected distribution of the mean difference under the null (H0) and alterna-
tive hypotheses (HA). If the mean difference exceeds a certain value deter-
mined by the test statistic then we reject the null hypothesis, and accept the 
alternative. Where does the sample size come in? The width of the curves is 
determined by the standard error of the estimate, SE(d), which is propor-
tional to the inverse of the square root of the sample size. Thus as the sample 
size gets bigger the curves become narrower. If a and d remain the same the 
value of b will diminish and the power will increase. If we keep the sample 
sizes fi xed, but increase d then again b will diminish and the power 
increase.

0
Accept H0 Reject H

b a/2 d
0

Value of test statistic.
Moving this point only reduces one risk at the expense 
of the other!

The distribution of the  
mean difference δ,
under H0 (i.e. δ =0).

The distribution of mean 
the difference δ, under  HA

(i.e. δ ≠0).

There is a risk of 
making a Type 1 
(false positive) error 
here!

There is a 

risk of 

making a 
Type 2 

(false

negative) 

error here!

Figure 14.1 Distribution of the mean difference d, under the null and alternative
hypothesis



 
14.3 Continuous data
A simple formula, for comparing the mean difference in outcomes between 
two groups, for two-sided signifi cance of 5% and power of 80% is given by

m = ⎛
⎝⎜

⎞
⎠⎟ =16

162σ
δ

Plan

Plan Plan
2 ,

Δ
 (14.1)

where m is the number of patients required per group.
In equation 14.1, ΔPlan = dPlan/sPlan is termed the standardised effect size since 

the anticipated difference is expressed relative to the anticipated standard 
deviation of each treatment group. The formula shows immediately why the 
effect size is the most important parameter – if one halves the effect size, one 
has to quadruple the sample size.

For clinical trials, in circumstances where there is little prior information 
available about the (standardised) effect size, Cohen (1988) has proposed 
that a value of Δplan ≤ 0.2 is considered a ‘small’ standardised effect, ΔPlan ≈
0.5 as ‘moderate’, and ΔPlan ≥ 0.8 as ‘large’. Experience has suggested that in 
many areas of clinical research these can be taken as a good practical guide 
for design purposes.

Worked example: Simple formula for a continuous variable – 
behavioural therapy

Suppose we wished to design a trial of cognitive behavioural therapy for 
subjects with depression. The outcome is the Hospital Anxiety and Depres-
sion scale (HADS), which is measured on a 0 (not anxious or distressed) to 
21 (very anxious or distressed) scale and we regard a change of 2 points as 
being clinically important. We know from previous published studies in this 
patient population that the standard deviation of HADS score is 4 points.

Thus the anticipated standardised effect size is, ΔPlan = dPlan/sPlan = 2/4 =
0.5, which Cohen would suggest is a ‘moderate’ effect. Using equation 
14.1, for 80% power and two-sided 5% signifi cance, we would require m
= 64 patients per group or 128 patients in all.

As this calculation is based on ‘anticipated’ values the calculated sample 
size should be rounded upwards sensibly – in this case to 130 patients or 
possibly even 150 depending on circumstances.
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Directions of sample size estimates

• Goes up for smaller a;
• Goes up for smaller b (that is, larger power);
• Goes up for smaller dPlan;
• Goes down for smaller sPlan.
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14.4 Binary data
For binary data, Table 14.1 shows how the number of patients required per 
treatment group changes as pPlan,C (denoted p1 for brevity) changes for fi xed 
a = 0.05 and 1 − b = 0.8.

Thus for p1 = 0.5 (50%), the number of patients to be recruited to each 
treatment decreases from approximately 400, 100, 40 and 20 as dPlan (denoted 
d = p2 − p1) increases from 10, 20, 30 to 40%. If a or b are decreased then the 
necessary number of subjects increases. The eventual study size depends on 
these arbitrarily chosen values in a critical way.

Example from the literature: Trial size – labour in water

The trial by Cluett et al (2004) found that 47% of those pregnant women 
giving birth who had a labour in water needed an epidural, compared with 
66% in those with standard management.

Suppose that the trial is to be conducted again but now with the benefi t 
of hindsight. The response to labour in water approximately 50% and that 
to standard care 65%. These provide the anticipated response rate for the 
control treatment as pPlan,C = 0.65 and an expected benefi t, dPlan = pPlan,T −
pPlan,C = −0.15. Here the benefi t is a reduction in the proportion requiring 
epidurals but we ignore the sign as it is the magnitude of the difference 
which is relevant for sample size calculations.

Setting a = 0.05 and 1 − b = 0.8, then Table 14.1 suggests approximately 
m = 170 patients per group. Thus a total of 340 patients would be required 
for the confi rmatory study. This calculation indicates that the reported 
trial of 99 patients was too small, or at least that the investigators had 
postulated a much larger (and unrealistic) value for dPlan.

Formulae for more precise calculations for the number of patients required 
to make comparisons of two proportions and for the comparison of 
two means are given in Section 14.8. The book by Machin et al (2008) 
gives extensive examples, tables and computer software for this and other 
situations.

It is usual at the planning stage of a study to investigate differences that 
would arise if the assumptions used in the calculations are altered. In particu-
lar we may have over-estimated the response rate of the controls. If pPlan,C

is set to 0.60 rather than 0.65, then, keeping pPlan,T = 0.50, dPlan = 0.10, and 
there is a change in our estimate of the required number of patients from 
m = 170 to approximately 388 per group. As a consequence we may have to 
be concerned about the appropriate value to use for the response rate for 
the controls as it is so critical to the fi nal choice of sample size.



 

Table 14.1 Sample size m per group required for a given response rate in the control group (p1) and the effect size anticipated (d = p2 – p1)
with 80% power (1 – b = 0.80) and 5% (a = 0.05) two-sided signifi cance

p2 p1

 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.10 435
0.15 141 686
0.20  76 199 906
0.25  49 100 250 1094
0.30  36  62 121  294 1251
0.35  27  43  73  138  329 1377
0.40  22  32  49  82  152  356 1471
0.45  18  25  36  54  89  163  376 1534
0.50  15  20  27  39  58  93  170  388 1565
0.55  12  16  22  29  41  61  96  173  392 1565
0.60  11  14  17  23  31  42  62  97  173  388 1534
0.65  9  11  14  18  24  31  43  62  96  170  376 1471
0.70  8  10  12  15  19  24  31  42  61  93  163  356 1377
0.75  7  8  10  12  15  19  24  31  41  58  89  152  329 1251
0.80  6  7  8  10  12  15  18  23  29  39  54  82  138  294 1094
0.85  5  6  7   8  10  12  14  17  22  27  36  49  73  121  250 906
0.90  4  5  6   7   8  10  11  14  16  20  25  32  43  62  100 199 686
0.95  4  4  5   6   7   8   9  11  12  15  18  22  27  36  49  76 141 435
1.00  3  4  4   5   6   6   7   8  10  11  13  15  18  22  27  35  48  74

The cells in the table give the number of patients required in each treatment arm.
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In certain situations an investigator may have access only to a restricted 
number of patients for a particular trial. In this case the investigator reason-
ably asks: ‘With an anticipated response rate pPlan,C in the controls, a differ-
ence in effi cacy postulated to be dPlan, and assuming a = 0.05, what is the 
power 1 − b of my proposed study?’ If the power is low, say 50%, the inves-
tigator should decide not to proceed further with the trial, or seek the help 
of other colleagues, perhaps in other centres, to recruit more patients to the 
trial and thereby increase the power to an acceptable value. This device of 
encouraging others to contribute to the collective attack on a clinically impor-
tant question is used by, for example, the British Medical Research Council, 
the US National Institutes of Health, and the World Health Organization.

14.5 Prevalence
We described surveys in Chapter 12 and one might be designed to fi nd 
out, for example, how many people wear dentures. Such a study is non-
 comparative and therefore does not involve hypothesis testing, but does require 
a sample size calculation. Here, what we need to know is how accurately we 
should estimate the prevalence of people wearing dentures in the population. 
Recall from Chapter 6 that, if m (rather than n) is the sample size, then the 
estimated standard error of the proportion p estimated from a study is

SE p
p p

m
( ) = −( )1

. This expression can be inverted to give m
p p

SE
= −( )1

2
.

Thus if we state that we would like to estimate a prevalence, which is 
anticipated to have a particular value pPlan, and we would like to have a 95% 
confi dence interval of pPlan ± 1.96SEPlan, we have the ingredients for a sample 
size calculation if we specify a required magnitude for the SE in advance. 
Specifi cally

m
SE

= −( )π πPlan Plan

Plan
2

1
.

Here, there is no explicit power value. The type I error is refl ected in the 
width of the confi dence interval. If we do carry out a survey of the prescribed 
size, m, and the prevalence is about the size pPlan we specifi ed, then we would 
expect our calculated confi dence interval to be wider than the specifi ed 50% 
of the time, and narrower than the specifi ed 50% of the time.

Worked example: Sample size – prevalence

Suppose we wished to estimate the prevalence of left-handed people in a 
population, using a postal questionnaire survey. We believe that it should 
be about 10% and we would like to have a fi nal 95% confi dence interval 
of 4% to 16%.



 
14.6 Subject withdrawals
One aspect of a clinical trial, which can affect the number of patients recruited, 
is the proportion of patients who are lost to follow-up during the course of 
the trial. These withdrawals are a particular problem for trials in which 
patients are monitored over a long period of follow-up time.

Here pPlan = 0.1 and the anticipated width of the confi dence interval 
is 0.16 − 0.04 = 0.12, suggesting SEPlan = 0.12/(2 × 1.96) ≈ 0.03. Thus m =
[0.1(1 − 0.1)]/(0.032) = 100. This implies the upper and lower limits of the 
confi dence interval are ±0.06 away from the estimated prevalence, pPlan.
Using Table 14.2, this leads to a more accurately estimated sample size 
of m = 97.

Note m is the number of responders to the survey. We may have to 
survey more patients to allow for non-response. If we assume a 50% 
response rate to the postal survey then we actually need to mail out 2 ×
100 = 200 questionnaires to get the required number of responders.

Table 14.2 Sample size m required to estimate the anticipated prevalence (πPlan) with 
upper and lower confi dence limits of ±0.01, ±0.02, ±0.05, ±0.06, or ±0.10 away from the 
anticipated value

 Required precision for the upper and lower confi dence
 limits for the anticipated prevalence πPlan

πplan ±0.01 ±0.02 ±0.05 ±0.06 ±0.10

0.05 1825  457  73
0.10 3458  865 139  97 35
0.15 4899 1225 196 137 49
0.20 6147 1537 246 171 62
0.25 7203 1801 289 201 73
0.30 8068 2017 323 225 81
0.35 8740 2185 350 243 88
0.40 9220 2305 369 257 93
0.45 9508 2377 381 265 96
0.50 9604 2401 385 267 97
0.55 9508 2377 381 265 96
0.60 9220 2305 369 257 93
0.65 8740 2185 350 243 88
0.70 8068 2017 323 225 81
0.75 7203 1801 289 201 73
0.80 6147 1537 246 171 62
0.85 4899 1225 196 137 49
0.90 3458  865 139  97 35
0.95 1825  457  73
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In these circumstances, as a precaution against such withdrawals, the 
planned number of patients is adjustment upwards to NW = N/(1 − W) where 
W is the anticipated withdrawal proportion. The estimated size of W can 
often be obtained from reports of studies conducted by others. If there is no 
such experience to hand, than a pragmatic value may be to take W = 0.1.

Example from the literature: Withdrawals – labour in water

For the planned confi rmatory trial following that of Cluett et al (2004) the 
sample size calculations from Table 14.1 suggested approximately m = 170 
patients per group. Thus with an anticipated withdrawal rate of 10% this 
might then be increased to 189, or a total of N = 378 or 380 mothers.

14.7 Internal pilot studies
As we have indicated, in order to calculate the sample size of a study one 
must fi rst have suitable background information together with some idea as 
to what is a realistic difference to seek. Sometimes such information is avail-
able as prior knowledge from the literature or other sources, at other times, 
a pilot study may be conducted.

Traditionally, a pilot study is a distinct preliminary investigation, con-
ducted before embarking on the main trial. However, Birkett and Day (1994) 
have explored the use of an internal pilot study. The idea here is to plan the 
clinical trial on the basis of best available information, but to regard the fi rst 
patients entered as the ‘internal’ pilot. When data from these patients have 
been collected, the sample size can be re-estimated with the revised knowl-
edge so generated.

Two vital features accompany this approach: fi rst, the fi nal sample size 
should only ever be adjusted upwards, never down; and second, one should 
only use the internal pilot in order to improve the components of the sample 
size calculation that are independent of the anticipated effect size. This 
second point is crucial. It means that when comparing the means of two 
groups, it is valid to re-estimate the planning standard deviation, sPlan but not 
dPlan. Both these points should be carefully observed to avoid distortion of 
the subsequent signifi cance test and a possible misleading interpretation of 
the fi nal study results.

14.8 Points when reading the literature
1. Check if the sample size in the study is justifi ed, either by a power based 

calculation or by availability. If not, consider the paper to be of lower 
quality.



 

2. Check if the variable used in the sample size calculation is the main 
outcome in the analysis

3. If a study is not signifi cant, and the authors are claiming equivalence, look 
at the size of the effect considered clinically important in the sample size 
calculation and see if the confi dence intervals reported in the analysis 
contain this effect. If so, the equivalence is not proven.

14.9 Technical details
As described earlier, to compute sample sizes we need to specify a signifi cance 
levela and a power 1 − b. The calculations depend on a function q = (za/2 + z1 −b)2,
where za/2 and z1 −b which are the ordinates for the Normal distribution of Table 
T1. Some convenient values of q are given in Table 14.3.

Comparison of proportions

Suppose we wished to detect a difference in proportions dPlan = pPlan,T − pPlan,C

with two-sided signifi cance level a and power 1 − b. For a χ2 test, the number 
in each group should be at least

m =
−( ) + −( )⎡

⎣⎢
⎤
⎦⎥

θ
π π π π

δ
Plan,T Plan,T Plan,C Plan,C

Plan
2

1 1
.

We can also use Table 14.1, if we only require a signifi cance level of 5% 
and a power of 80%.

Table 14.3 Table to assist in sample size calculations

Two-sided signifi cance level Power q = (za/2 + z1–b)2

5% 80%  7.8
5% 90% 10.5
1% 80% 11.7
1% 90% 14.9

Worked example: Comparison of proportions

In a clinical trial suppose the anticipated placebo response is 0.25, and a 
worthwhile response to the drug is 0.50. How many subjects are required 
in each group so that we have an 80% power at 5% signifi cance level?

With a = 0.05 and b = 0.2, then from Table 14.3, q = 7.8. The design 
team suggest dPlan = pPlan,T − pPlan,C = 0.25, m = 7.8 × [(0.25 × 0.75 +
0.5 × 0.5)/0.252] = 54.6. Thus we need at least 55 patients per group or 
N = 2m = 110 patients in all. From Table 14.1, we would be able to say 
that the required number of patients is 58 per group.
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Comparison of means (unpaired data)

Suppose on the control drug we expect the mean response to be mPlan,C and 
on the test we expect it to be mPlan,T. If the standard deviation, sPlan, of 
the response is likely to be the same with both drugs, then for two-sided 
signifi cance level a and power 1 − b the approximate number of patients per 
group, is

m = 2θ σ
δ

Plan
2

Plan
2 .

Worked example: comparison of means

Suppose in a clinical trial to compare two treatments to reduce blood 
pressure one wished to detect a difference of 5 mmHg, when the standard 
deviation of blood pressure is 10 mmHg, with power 90% and 5% signifi -
cance level.

Here dPlan = 5, sPlan = 10 giving an anticipated standardised effect size of 
ΔPlan = 5/10. Use of Table 14.3 with a = 0.05 and b = 0.1 gives q = 10.5, 
hence m = 2 × 10.5 × 102/52 = 84 per treatment group or approximately 
N = 170 patients in total.

14.10 Exercises
1. Suppose we wish to estimate the prevalence of nurses dissatisfi ed with 

their job. We think it will be about 20%, and we would like to estimate 
this to within 5%. How many subjects do we need?

2. Hippisley-Cox et al (2003) described a survey of the results of various 
statins on serum cholesterol in general practice. They found that the serum 
cholesterol for 554 patients on atorvastatin to be 4.99 mmol/l (95% CI 4.90 
to 5.09). Suppose a new statin came on the market and we wished to design 
a trial to see if it was an improvement on this. Assume a difference of 0.5 
mmol in serum cholesterol is worthwhile. How many patients would be 
needed for a two-sided signifi cance of 5% and 80% power?

3. Suppose we are planning an exercise trial in 50–74-year-old men, to see if 
a daily exercise regime for a year will lead to improved quality of life 
compared to a control group. We know from published data on the SF-36 
quality of life measure that at this age men have a mean score on the 
Physical Function dimension of 73.0, with a standard deviation of 27.0. 
Suppose the effect of the daily exercise regime on physical function will 
be considered important if it increases the Physical Function Dimension 
of the SF-36 by at least 10 points. How many patients would be needed 
for a two-sided signifi cance of 5% and 90% power?



 

4. Suppose we are planning an exercise trial in 50–74-year-old men identifi ed 
as at high risk of a heart attack, to see if a daily exercise regime for a year 
will lead to a reduction in the number of heart attacks. One group will be 
given the daily exercise regime and the other control group will receive 
no help. On the basis of published evidence we expect that in the control 
group 20% of the men will have suffered a heart attack within the year. 
We would be interested in detecting a reduction of heart attacks to 15% 
in the exercise group. How many patients would be needed for a two-sided 
signifi cance of 5% and 80% power?
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Summary

Some common errors found in the medical literature are described. They 
comprise problems in using the t-test, repeated measure studies, plotting the 
change of a variable in time against the initial value, regression to the mean 
and confusing statistical and clinical signifi cance.

15.1 Introduction
Many of the statistical errors that occur in the medical literature are fre-
quently not very major and could be overcome with a little more care by the 
writing team and by more vigilance from any reviewers (Cole et al 2004). For 
example, using a t-test when it is dubious that the data are Normally distrib-
uted, or failing to provide enough information for the reader to discover 
exactly how a test was carried out. There are frequent examples of poor 
presentation, or of presentation in the Abstract of results irrelevant to the 
problem being tackled by the paper. These errors do not usually destroy a 
paper’s total credibility; they merely detract from its quality and serve to 
irritate the reader. However, some errors stem from a fundamental misun-
derstanding of the underlying reasoning in statistics, and these can produce 
spurious or incorrect analyses. One of these we discussed in Chapter 11, 
which is the inappropriate use of the correlation coeffi cient in method com-
parison studies.

15.2 Using the t-test
We give a fi ctitious example, which is based, however, on a number of pub-
lished accounts. Thirty patients with chronic osteoarthritis were entered into 
a randomised double-blind two-group trial that compared a non-steroidal 
anti-infl ammatory drug (NSAID) with placebo. The trial period was one 
month. Table 15.1 summarises the change in the visual analogue scale (VAS) 
rating for pain, the number of tablets of paracetamol taken during the study 
and the haemoglobin levels at the end of the study.

Table 15.1 Results of a two-group trial of an NSAID in patients with chronic 
osteoarthritis

 Placebo NSAID

Number of patients (n) 15  15

Observation Mean SD Mean SD t p

Change in VAS (cm)  1.5  2.0  3.5  2.5 2.41 0.02
Paracetamol (number of tablets) 20.1 19.7 15.1 14.7 0.79 NS
Haemoglobin (g/dl) 13.2  1.00 12.5  1.10 1.82 NS



 

The fi rst problem encountered with Table 15.1 is that the degrees of 
freedom for the t-statistic are not given. If it is a straightforward two-sample 
t-test then they can be assumed to be 2n − 2 = 28. However, it is possible that 
the design is that of a crossover trial and hence is paired, in which case a 
paired t-test used with df = n − 1 = 14, or the results come from an adjusted 
comparison, using multiple regression as described in Chapter 9. In both 
these cases the degrees of freedom will be less than the presumed 28. Of 
course, some clue to which is appropriate may be given in the supporting 
text.

The second problem is that the comparison of interest is the difference 
in response between the NSAID and placebo, together with an estimate of 
uncertainty or precision of this difference, and yet this comparison is not 
given. Two extra columns should therefore be added to Table 15.1. The fi rst 
would give the mean difference in the observations between placebo and 
NSAID, and the second a measure of the precision of this estimate, such as 
a 95% confi dence interval. We cannot obtain these with the information 
given in Table 15.1 without knowledge of the full design and/or type of analy-
sis conducted.

From the data it can be seen that for both the change in VAS and the 
number of tablets taken, the SDs in each treatment group are similar in size 
as their respective means. Since a change in VAS can be either positive or 
negative, this need not be a problem. However, the number of tablets cannot 
be negative, it must be zero or a positive number, and so the large SD indi-
cates that these data must be markedly skewed. This calls into question the 
validity of the use of the t-test on data which is non-Normal. Either a trans-
formation of the original data, perhaps by taking the logarithm of the number 
of tablets, or perhaps the use of the non-parametric Mann–Whitney test of 
Chapter 8 would be more appropriate.

For the number of tablets of paracetamol and haemoglobin the table gives 
p = NS. The abbreviation means ‘not signifi cant’ and is usually taken to mean 
a p-value >0.05, but the notation is uninformative and should not be used. 
Its use gives no indication of how close p is to 0.05. For the number of tablets 
of paracetamol taken, if df = 28 then from Table T1, p > 0.20 (more precise 
value 0.42) and for haemoglobin 0.05 < p < 0.10 (more precise value 0.08). 
Both are larger than the conventional value of 0.05 for formal statistical sig-
nifi cance. However, the p-values suggest that a larger trial may have pro-
duced a ‘signifi cant’ difference for haemoglobin but not for the number of 
tablets although for the latter, since the analysis is clearly incorrect, this may 
not be the case. Further, if we assume the unpaired t-test with df = 28 is 
appropriate for comparing the mean haemoglobin values, the corresponding 
95% CI for the difference is −0.09 to 1.49 g/dl. This indicates the possibility 
of the existence of quite a large effect of the NSAID on haemoglobin. A
large (clinically important) effect is usually taken as a difference in excess of 
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about 0.8 of the SD. Here the SD for the NSAID group is 2.5 and the 
upper limit of the 95% CI about 1.5, so the possible effect may be as much 
as 1.5/2.5 = 0.6. This may be thought of as a moderate difference and may be 
of clinical importance were it found to be the case.

15.3 Plotting change against initial value
Adjusting for baseline

In many clinical studies, baseline characteristics of the subjects themselves 
may be very infl uential on the value of the subsequent endpoint assessed. 
For example, in the context of clinical trials in children with neuroblastoma 
it is known that prognosis in those with metastatic disease is worse than in 
those without. Indeed the difference between these two groups is likely to 
exceed any difference observed between alternative treatments tested within 
a randomised trial. In other situations, the outcome measure of interest may 
be a repeat value of that assessed at baseline. Thus in the example of Table 
15.1, pain was measured at the beginning and end of study, so that it was the 
change in VAS (end of study minus baseline) for each patient that was sub-
sequently summarised in order to compare treatments. In such circumstances, 
investigators are often tempted to graph this change against the baseline; the 
logic being to correct in some way for different baseline levels observed 
(which may be considerable).

Worked example: Weight change

The birthweight and weight at one month of 10 babies randomly selected 
from a larger group is given in Table 15.2.

The research question is: ‘Do the lighter babies have a different rate of 
growth early in life than the heavier ones?’ The graph of the change in 
weight or growth over the 1-month period against the birthweight is shown 
in Figure 15.1. It would appear from this fi gure that the smaller babies 
grow fastest because the growth (the y-axis) declines as the birth-weight 
increases (the x-axis). Indeed the correlation between birthweight and 
weight gain is r = −0.79 which has df = 8 and p = 0.007.

The negative correlation observed in Figure 15.1 appears to lead to the 
conclusion that weight gain is greatest in the ‘smallest at birth’ babies but 
this is a fallacious argument.

In fact, if we took any two equal sized sets of random numbers (say) A
and B and plotted A − B on the y-axis against B on the x-axis we would 
obtain a negative association. This is because we have −B in the y-term and 
+B in the x-term and as a consequence we are guaranteed a negative cor-
relation. The presence of this intrinsic correlation makes the test of signifi -



 

Regression to the mean

Imagine an individual with a randomly varying resting carotid pulse rate, as 
was observed in the example of Figure 3.6, and that this rate has an approxi-
mately Normal distribution about the mean level for that individual with a 
certain SD. Suppose we wait until an observation occurs which is two SDs 
above the mean, perhaps the third last in Figure 3.6 then the chance that the 
next value is smaller than a quite extreme observation with value close 
to (mean + 2SD) is about 0.975 or 97.5%. We are assuming here that the 

cance for an association between a change and the initial value invalid. 
Thus in the above example with r = −0.79, we do not know how much of 
this negative value is due to the phenomenon we have just described.

However, provided that the two sets of data have approximately the 
same variability, a valid test of signifi cance can be provided by correlating 
(A − B) with (A + B)/2. Somewhat surprisingly, if we took any two equal 
sets of random numbers (say) A and B as before and plotted A − B on the 
y-axis against (A + B)/2 on the x-axis we would not get an intrinsic nega-
tive correlation but one close to zero of any sign; its magnitude differing 
from zero only by the play of chance.

Worked example: Weight change

Figure 15.2 shows weight gain plotted against the mean of birth- and 1-month 
weights. The corresponding correlation coeffi cient is r = −0.13 and with 
df = 8 this yields p = 0.70. Although the negative relationship is still apparent, 
the evidence for a relationship is much weaker using this approach.

Table 15.2 Birthweight and 1-month weight of 10 babies – data ordered by increasing 
birthweight for convenience

Birthweight (g) 1-month weight (g) Weight gain Mean
  (1-month – Birth) (1-month + Birth)/2

2566 3854  1288 3210
2653 4199  1546 3426
2997 5492  2495 4244
3292 5317  2025 4304
3643 4019   375 3831
3888 4685   787 4286
4065 4576   512 4320
4202 4293   91 4247
4219 4569   350 4394
4369 3700 −669 4035
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successive values are independent of each other and this may not be entirely 
the case. Nevertheless the chance of the next observation being less than this 
quite extreme observation will be high. This phenomenon is termed regres-
sion to the mean but, as we have illustrated, despite its name it is not confi ned 
to regression analysis. It also occurs in intervention studies which target 
individuals who have a high value of a risk variable, such as cholesterol. In 
such a group, the values measured later will, by chance, often be lower even 
in the absence of any intervention effect.

In intervention studies having the same entry requirement for both groups 
can compensate for the regression to the mean. In this situation, if the inter-
ventions were equally effective then both groups would regress by the same 
amount. Thus it would not be a problem in a trial in which the interventions 
are randomised. However, it can appear in more insidious guises, for example 
by choosing a locality which for 1 year only has had a high cot death rate; 
even if nothing is done, the cot death rate for that district is likely to fall in 
the next. In randomised studies, where we have a priori evidence that the 
baseline results should be comparable, then the correct method to adjust for 
baseline is multiple regression as described in Chapter 9. The dependent 

Figure 15.1 Growth of 10 babies in 1 month against birthweight



 

Figure 15.2 Weight gain of 10 babies in 1 month against the mean of birth and 1-month 
weight

Example from the literature: Change in serum cholesterol

Findlay et al (1987) give in the graph of Figure 15.3 the change in fasting 
serum cholesterol against their initial cholesterol level in 33 men after 30 
weeks of training.

The correlation of r = −0.57, with quoted p < 0.001, suggests strongly 
that those with high initial levels changed the most. However, after extract-
ing the date from this graph, the resulting correlation of the change cho-
lesterol with the mean of the initial and fi nal levels is r = 0.28, df = 31 and 
p = 0.11. This implies that the association could well have arisen by chance, 
although if any relationship does exist it is more likely to be positive since 
the observed r > 0!

variable is the outcome, and the dependent variables include the baseline 
and a dummy variable for the intervention. One would get the same result 
if the dependent variable is the difference between outcome and baseline, 
but the former is easier to understand and more generalisable.
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15.4 Repeated measures
A common design used in the collection of clinical data is one in which a 
subject receives a treatment and then a response is measured on several 
occasions over a period of time. Thus in the early development stage of a 
new drug, subjects may receive a single injection of the compound under 
study then blood samples are taken at intervals and tested in order to deter-
mine the pharmacokinetic profi le.

Figure 15.3 Change in fasting serum cholesterol after 30 weeks of training. From Findlay 
et al (1987). Cardiovascular effects of training for a marathon run in unfi t middle-aged men. 
British Medical Journal, 295, 521–524: reproduced by permission of the BMJ Publishing 
Group.

Example: Metabolic rates in pregnant women

Figure 15.4 shows a graph of the metabolic rate measured over a 2-hour 
period in seven women following a test meal. The study was repeated at 
12–15, 25–28 and 34–36 weeks of pregnancy. The corresponding values in 
the same women following lactation were used as controls.

The numerous signifi cance tests would appear to imply, for example, that, 
at 25–28 weeks of pregnancy the metabolic rate of a woman 60 minutes after 
ingesting a meal was not signifi cantly different from control, but that it was 
signifi cantly different at 45 and 75 minutes.



 

***
***

***
*

*
*

***

Figure 15.4 Rise in metabolic rate in response to test meal. Female subjects after lacta-
tion (dotted line) and at 12–15, 25–28 and 34–36 weeks of pregnancy (solid line). Points 
are means. Bars are SEM (standard error of mean). * p < 0.05, *** p < 0.001
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In addition, although the use of *, ** and *** notation to summarise dif-
ferences as statistically signifi cant with p-values less than 0.05, 0.01 and 0.001, 
respectively, gives a quick impression of differences between groups, their 
use is not encouraged. One reason is that exact probabilities for the p-values
are more informative than, for example, merely implying the p-value < 0.05
by use of *. Also, and usually more importantly, the magnitude of the 
p-values for comparisons which are not ‘statistically signifi cant’ are not indi-
cated by this device. This is equivalent to the ‘NS’ problem of Table 15.1.

Invalid approaches

The implication of the error bars used in the graphs is that the true curve 
could be plausibly drawn through any point that did not take it outside the 
ranges shown. This is not true for several separate reasons. Since the error 
bars are in fact 68% confi dence intervals (one standard error either side of 
the mean), then crudely there is a 68% chance that the true mean is within 
the limit. If we had 10 independent observations, then the chances of the true 
line passing through each set of intervals is 0.6810 = 0.02. This is small and 
hence true line is very unlikely to passing through them all. However, the 
observations are certainly not independent, so this calculation gives only a 
guide to the true probability that the curve passes through all the intervals. 
Nevertheless it does suggest that this probability is likely to be small.

Additionally, the average curve calculated from a set of individual curves 
may differ markedly from the shape of these individual curves.

Example: – Average response over time

To illustrate this, three response curves labelled A, B and C are shown in 
Figure 15.5, together with their average. The individual responses are 
simply a sudden change from Level 1 values to Level 2 but these occur at 
different times for the three subjects. Plotting the average response at each 
time point a, b and c, gives the impression of a gradual change for the 
whole group.

Often the stated purpose of the signifi cance test is to ask the question, 
‘When does the response under one treatment differ from the response under 
another?’ It is a strange logic that perceives the difference between two 
groups of continuous variables changing from not signifi cantly different to 
signifi cantly different between two adjacent time points. Thus suppose the 
time points in Figure 15.4 had been only 1 minute (or 1 second) apart rather 
than 15 minutes, then it would certainly seem very strange to test for a dif-
ference between successive time points – yet in reality, if the curve is truly 



 

changing, then they will be different but it is not sensible to say they are sig-
nifi cantly different even if two values (far apart) are very different. Similarly 
it is the whole curve that one wishes to compare between groups not indi-
vidual points along the profi les.

Valid approaches

Having plotted the individual response curves, a better approach is to try 
to fi nd a small number of statistics that effectively summarise the data. 
For example in Figure 15.5, each individual can be summarised by the 
time at which they change from Level 1 to Level 2. These are times a, b
and c. Similarly in Figure 15.4 the area under the curve from 0 to 120 
minutes will effectively summarise the change in metabolic rate over the 
period.

Summary statistics for repeated measure curves:

• area under the curve (AUC);
• maximum (or minimum) value achieved;
• time taken to reach the maximum (or minimum);
• slope of the line.

The above statistics can then be used in an analysis as if they were raw 
observations; one for each subject. Thus in the example of Figure 15.4, one 
could compare the area under the metabolic rate curve for the four periods: 
after lactation, 12–15, 25–28 and 34–36 weeks, In general the analysis of 
repeated measures is quite tricky, and a statistician should be consulted early 
in the process.

Figure 15.5 Response curves from three individuals and their a average response at each 
time point. The three subjects change from level 1 to level 2 at times, a, b and c
respectively
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15.5 Clinical and statistical signifi cance
Once a study has been designed, conducted, the data collected and ultimately 
analysed the conclusions have to be carefully summarised. There are two 
aspects to consider, depending on whether or not the result under consider-
ation is statistically signifi cant.

1. Given a large enough study, even small differences can become statisti-
cally signifi cant. Thus in a clinical trial of two hypotensive agents, with 500 
subjects on each treatment, one treatment reduced blood pressure on average 
by 30 mmHg and the other by 32 mmHg. Suppose the pooled standard devia-
tion was 15.5 mmHg, then the two-sample z-test, which can be used since the 
samples are very large, gives z = 2.04, p = 0.04. This is a statistically signifi cant 
result which may be quoted in the Abstract of the report as ‘A was signifi -
cantly better than B, p-value = 0.04’, without any mention that it was a mere 
2 mmHg better. Such a small difference is unlikely to be of any practical 
importance to individual patients. Thus the result is statistically signifi cant but 
not clinically important.

2. On the other hand, given a small study, quite large differences fail to 
be statistically signifi cant. For example, in a clinical trial of a placebo versus 
a hypotensive agent, each group with only 10 patients, the change in blood 
pressure for the placebo was 17 mmHg and for the hypotensive drug it was 
30 mmHg. If the pooled standard deviation were 15.5 mmHg, by the two-
sample t-test: t = 1.9, df = 18 and p = 0.06. This fails to reach the conventional 
5% signifi cance level and may be declared not statistically signifi cant.
However, the potential benefi t from a reduction in blood pressure of 13 mmHg 
is substantial and so the result should not be ignored. In this case, it would 
be misleading to state in the Abstract ‘There was no signifi cant difference 
between the drug A and B’, and it would be better to quote the extra gain 
achieved of 13 mmHg, together with a 95% CI of −2 to 28 mmHg. In this way 
the reader can truly judge if the trial results are indicative of no difference 
or that, in a larger trial, the clinically important benefi t of 17 mmHg indicated 
may be proven to be so.

15.6 Exploratory data analysis
‘Fishing expeditions’

There is an important distinction to be made between studies that test well-
defi ned hypotheses and studies where the investigator does not specify the 
hypotheses in advance. It is human nature to wish to collect as much data as 
possible on subjects entered in a study and, having once collected the data, 
it is incumbent on the investigator to analyse it all to see if new and unsus-
pected relationships are revealed.



 

In these circumstances it is important, a priori, to separate out the main 
hypothesis (to be tested) and subsidiary hypotheses (to be explored). Within 
the ‘to be explored’ category of so-called ‘fi shing expeditions’ or ‘data-
 dredging exercises’ the notion of statistical signifi cance, as discussed in 
Chapter 7, plays no part at all. It can be used only as a guide to the relative 
importance of different results. As one statistician has remarked: ‘If you 
torture the data long enough it will eventually confess!’ Subsidiary hypothe-
ses that are statistically signifi cant should be presented in an exploratory 
manner, as results needing further testing with other studies. For clinical 
trials, this is particularly the case for subgroup analysis. Doctors are always 
interested to see whether a particular treatment works only for a particular 
category of patient. The diffi culty is that the subgroup is not usually specifi ed 
in advance. Results of subgroup analysis, where the subgroups are discovered 
during the data processing, should always be treated with caution until con-
fi rmed by other studies.

If the data set is large, a different approach to ‘fi shing’ is to divide it into 
two, usually equal and randomly chosen, sets. One set is used for the explor-
atory analysis. This then generates the hypotheses that can be tested in the 
second set of data.

Multiple comparisons

In some cases, it may be sensible to carry out a number of hypothesis tests 
on a single data set. Clearly if one carried out a large number of such tests, 
each with signifi cance level set at 5%, then, even in the absence of any real 
effects, some of the tests would be signifi cant by chance alone.

There are a number of solutions to controlling the consequentially infl ated 
(above 5%) Type I error rate. A simple ad-hoc method is to use a Bonferroni 
correction. The idea is that if one were conducting k signifi cance tests, then 
to get an overall Type I error rate of a, one would only declare any one of 
them signifi cant if the p-value was less than a/k. Thus, if a clinician wanted 
to test fi ve hypotheses in a single experiment (say fi ve different treatments 
against a control) then he/she would not declare a result signifi cant unless 
the p-value for any one of the tests was less that 0.01. The test tends to be 
rather conservative; that is the true Type I error rate will now be less than 
0.05, because the hypothesis tests are never truly independent. Thus it would 
miss detecting a signifi cant result for an uncertain number of the tests con-
ducted. However, it can be useful to temper enthusiasm when a large number 
of comparisons are being carried out!

There is no general consensus on what procedure to adopt allow for 
multiple comparisons (Altman et al, 2000). We would therefore recommend 
the reporting unadjusted p-values (to three decimal places/signifi cant 
fi gures) and confi dence limits with a suitable note of caution with respect to 
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interpretation. As Perneger (1998) concludes: ‘simply describing what tests 
of signifi cance have been performed, and why, is generally the best way of 
dealing with multiple comparisons.’

15.7 Points when reading the literature
1. Are the distributional assumptions underlying parametric tests such as the 

t-test satisfi ed? Is there any way of fi nding out?
2. If a correlation coeffi cient is tested for signifi cance is the null hypothesis 

of zero correlation a sensible one?
3. Is the study a repeated measures type? If so, beware! Read the paper by 

Matthews et al (1990) for advice on handling these types of data.
4. Are the results clinically signifi cant as well as statistically signifi cant? If 

the results are statistically not signifi cant, is equivalence between groups 
being claimed? If the result is statistically signifi cant, what is the size of 
the effect? Is there a confi dence interval quoted?

5. Have a large number of tests been carried out that have not been reported? 
Were the hypotheses generated by an exploration of the data set, and then 
confi rmed using the same data set?

6. Have the subjects been selected because of a high or low value of a 
particular variable, and this variable subsequently remeasured? If so 
beware!

15.8 Exercises
1. A police authority installed speed cameras at accident black spots. In the 

following year they noted that the number of accidents at these sites had 
fallen from the year before the cameras were installed. Can one thus con-
clude that speed cameras are successful in reducing accidents?

2. A group of children were identifi ed as slow learners. They were then 
randomly allocated to take either a cod liver oil capsule or a dummy 
placebo in a double blind trial. After 6 months the group allocated 
cod-liver oil appeared to have improved in terms of reading ability, rela-
tive to the dummy group and this difference was statistically signifi cant 
(p-value < 0.01). Can one say this was a causal effect? Should one recom-
mend all slow learners take cod liver oil?
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Chapter 1

1. (i) continuous  (ii) ordinal  (iii) continuous  (iv) continuous
(v) count  (vi) binary.

2. They are both quantitative variables. There are two main differences: (i) 
Shoe size can, in theory be measured exactly; it is merely convenience to 
group them into different categories. There is no underlying continuous 
variable for family size; one cannot have a family with 1.5 children. (ii) 
The labels for shoe size are not on a ratio scale since there is no shoe size 
0. Thus someone with a shoe size 10 (EU scale) does not have feet twice 
as big as someone with shoe size 5. Family size, on the other hand, is a 
count variable. A family with two children has twice as many children as 
a family with one child.

3. One loses information on the spread of the data. You will know how many 
people have a BMI > 30, but not how many have a BMI > 25 kg/m2 say. If 
you were told a patient was anaemic, you would like to know the propor-
tion of healthy people who are anaemic in the same age/gender group as 
the patient. It would be useful to know the exact value, to see how far 
from the cut-off the patient was (although for this to be useful one would 
also need to know the variability of the data). One might conduct further 
tests, for example an endoscopy, before treating the patient.

Chapter 2

1.   (i)  Bar chart of the blood group of 55 women diagnosed as suffering from 
thromboembolic disease.
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(ii)  It would appear that there are more women in the thromboembolic 
group in blood groups A and AB and fewer in group O.

2. (i)  Proportion of women with epidural: Labour in water is 23/49 = 0.47 
or 47%: Augmentation is 33/50 = 0.66 or 66%.

(ii)  Relative risk of epidural for the Labour in water women compared 
with those having Augmentation is 0.47/0.66 = 0.71.

(iii) Odds of epidural: Labour in water = 0.47/(1 − 0.47) = 0.89
  Odds of epidural: Augmentation is 0.66/(1 − 0.66) = 1.94. OR of epi-

dural for the Labour in water women compared with Augmentation 
women is 0.89/1.94 = 0.46. The OR is less than the RR and they differ 
because the event is quite common.

(iv)  ‘Risk’ of epidural on Labour in water is 23/49 = 0.47, ‘Risk’ of epidu-
ral on Augmentation is 33/50 = 0.66. The Absolute Risk Difference 
for labour in water is ARR = ⏐0.47 − 0.66⏐ = 0.19.

3. One would like to know what is the actual risk of recurrence. Over what 
time frame has the risk been measured? Does it work for all breast cancers 
or only a specifi c type and grade? Also what are the types and risks of any 
side-effects?
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Chapter 3

1.  (i)  Histogram and dot plot of the age (in years) of a sample of 20 motor 
cyclists killed in road traffi c accidents
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Age distribution is positively skewed

  (ii) Mean = 30.9 years; Median = 24.0 years; Mode = 24.0 years

(iii) Range is 15 to 71 years; Interquartile range is 20 to 37 years; 
SD = 15.9 years

Either the range or interquartile range should be used to describe the vari-
ability. The SD should not be used since the distribution is skewed.

2.  (i)  Scatter plot of father’s height vs. son’s height
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(ii)  Yes: there does appear to be a linear relationship: tall fathers seem 
to have tall sons. Note that father’s heights are plotted on the hori-
zontal axis since causality goes from father to son, not vice versa.

Chapter 4

1. The way to answer this sort of question is to set up the 2 × 2 table sup-
posing we have (say) 100 people in the study. Then we would fi nd that 30 
have appendicitis and of these 0.7 × 30 = 21 would have a high tempera-
ture. We get the following table

  Disease: Acute appendicitis

  Yes No

Test: High 21 28  49
Temperature Low  9 42  51

30 70 100

(a)  F (true 21/30)  (b) T  (c) F (true 21/49)  (d) T  (e) F: 
specifi city is independent of prevalence.

2. (a)  T  (b) F: Specifi city refers to patients without disease  (c) T
(d) F: sensitivity is independent of prevalence  (e) T.

3. (a)  T  (b) F: in some circumstances it is better to have a test which is 
more specifi c  (c) T  (d) T  (e) T.

Chapter 5

1. Using the Binomial distribution formula (5.1)

Prob 4 trivials  out of 5 patients‘ ’( ) =
−

−5
4 5 4

0 5 1 0 54!
!( )!

. ( . ) == 0 156.

2. Using the Poisson formula (5.2)

Prob 10 new cases( ) = − =exp( )
!

.
10 10

10
0 1251

10
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3. First calculate Z, the number of standard deviations 160 is away from the 
mean: (160 − 141.1)/13.62 = 1.39. Looking for Z = 1.39 in the Table T1 
gives the probability of being outside the range of the mean ± 1.39 SD to 
be 0.1645. Therefore the probability of having a systolic blood pressure of 
160 mmHg or higher is 0.08225 (or 8%).

4. (i) F  (ii) T  (iii) T.

5.   (i)  First calculate the number of standard deviations 95 is away from the 
mean:

  (95 − 70)/10 = 2. Look for Z = 2.5 on the Normal distribution 
Table T1 which gives the probability of being outside the range of 
the mean ± 2.5 SD to be 0.0124. Therefore the probability of hav-
ing a diastolic blood pressure of 95 mmHg or above is 0.0062 
(or 0.62%).

(ii)  Calculate the number of standard deviations that 55 is away from the 
mean (55 − 70)/10 = −1.5 (ignore minus sign)

Looking for Z = 1.5 in Table T1 gives the probability of being outside the 
range of the mean ± 1.5 SD to be 0.1336. Therefore the probability of having 
a diastolic blood pressure of 55 mmHg or less is 0.0668 (or 6.7%)

6. The expected referral rate is 2.8 per 1000 population. Thus in a population 
of 6000 one would expect 16.8 referrals. Assuming a Poisson distribution, 
the SD is 16 8. = 4.1. The GPs observation of 27 is (27 − 16.8)/4.1 = 2.48 
SDs from the mean. From Table T1 we see that the probability of getting 
a result this extreme is 0.013, so this GP’s rate is unusually high. Note 
however, this also assumes this GP was chosen at random. If she was 
picked out of a large number of GPs as being the highest then this proba-
bility is not relevant.

Chapter 6

1. (a) T  (b) T  (c) F  (d) T  (e) T.

2. (a) F  (b) T  (c) F  (d) T  (e) F.

3. (a)  Sample mean = (156 + 154 + 140 + 158)/4 = 152.0 mm. Variance =
[(156 − 152)2 + (154 − 152)2 + (140 − 152)2 + (158 − 152)2] / (4 − 1) =
66.667 mm2. Hence SD = 66 667. = 8.16 mm.
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(c) The mean mid-upper arm circumference in mm of sample 10 in Table 
6.5 is x̄ = 152.0 mm with a standard deviation of s = 8.16 mm. The 

standard error of the mean is 
s
n

= =8 16

4
4 08

.
. mm .

4. (a)  Dot plots of mean mid-upper arm circumferences for 10 random 
samples of sizes 4 and 16 respectively.
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(b)  Dot plot of 10 mean Mid-upper arm circumferences of for samples of 
size 4.
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(b)  The mean mid-upper arm circumference in mm of sample 4 in Table 
6.6 is x̄ = 151.25 mm with a standard deviation of s = 11.19 mm. The 

standard error is 
s
n

= =11 19

16
2 80

.
. mm .

(c) We would expect that means of repeated samples of size 4 will have 
a Normal distribution with mean = 152 mm and a standard deviation 
of 4.08 mm. We would expect that means of repeated samples of size 
16 will have a Normal distribution with mean = 151 mm and a standard 
deviation of 2.80 mm. This illustrates that the standard error will 
decrease as the sample size increases. Hence larger samples provide 
more precise estimates.

5. (a)  The 95% CI = 152.0 − (1.96 × 4.08) to 152.0 + (1.96 × 4.08) or 144 to 
160 mm.

Dot plots and 95% CIs for mid-upper arm circumferences for random samples 
of size 4 and 16 with 95% confi dence intervals for two selected samples.

(b)  The 95% CI is 151.25 − (1.96 × 2.80) to 151.25 + (1.96 × 2.80) or 
approximately 146 to 157 mm.

6. The proportion of acute appendicitis cases which are female 
was: p = 73/120 = 0.608 (60.8%) and the standard error SE(p) =

0 608 1 0 608 120 0 045. . / . .× −( ){ }[ ] =
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The 95% CI for the true population proportion of female acute appendi-
citis patients is given by: 0.608 − (1.96 × 0.045) to 0.608 + (1.96 × 0.045) or 
0.52 to 0.70.

Chapter 7

1. (a)  The null hypothesis is that the percentage of deliveries where there 
was a failure to respond to signs of foetal distress did not differ 
between the cerebral palsy babies and the delivery book controls. The 
alternative hypothesis is that there was a difference between the two 
groups with respect to failure to respond to signs of foetal distress.

(b)  Failure to respond to signs of foetal distress was noted in 25.8% of 
the cerebral palsy babies and in 7.1 % of the delivery book babies. 
The difference between these two percentages was 25.8 − 7.1 = 18.7%. 
This is the actual or absolute difference in the two percentages and 
so is expressed in percentage points, and is sometimes referred to as 
the absolute risk difference or absolute risk reduction.

(c) The 95% CI shows that the difference between the two groups is 
estimated to be at least as large as 10.5% and may be as great as 
26.9%. Since the interval excludes 0, there is good evidence for a real 
difference in the groups in the population from which the samples 
come.

2. (a)  On average the patients in the clinic group had 5.9 more ulcer-free 
weeks than the control group and the 95% CI for this difference 
ranged from 1.2 to 10.6 weeks. As this confi dence interval does not 
include 0 weeks we can conclude that there was a signifi cant difference 
between the two groups with respect to the number of ulcer-free 
weeks over the 12 month study period.

(b)  We know that the 95% CI is approximately (mean − 2 × SE) to 
(mean + 2 × SE) and so we can use either the lower limit (or the upper 
limit) of the confi dence interval to obtain the SE. For example, 
SE = (mean − lower limit) / 2 = (5.9 − 1.2) / 2 = 2.35 weeks.

(c) Mean costs were £878 per year for the clinic group and £863 for the 
control group and the p-value for the difference was 0.89. As this 
value is greater than the critical value of 0.05, we can conclude that 
there is no evidence of a statistically signifi cant difference between 
the groups with respect to cost of treatment (technically speaking –
there is insuffi cient evidence to reject the null hypothesis).

(d)  From the information above, it would be reasonable to conclude 
that community based leg ulcer clinics are more effective than 
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traditional home-based treatment, in terms of the number of ulcer-free 
weeks. This benefi t is achieved at a marginal additional cost. If we 
divide the mean difference in costs between the two groups by the mean 
difference between the groups in ulcer-free weeks we get something 
called the incremental cost-effectiveness ratio. This gives £15/5.9 weeks, 
and so it costs about £2.50 to achieve an extra-ulcer free week.

3. There were several options here:

(a)  The proportion with developmental regression did not change over 
the 20-year period. The alternative to this is that the proportion did 
change over the period.
 The proportion with bowel problems did not change over the 20-
year period. The alternative to this is that the proportion did change 
over the study period.
 The proportion reporting bowel problems did not differ between 
those with developmental regression and those without developmen-
tal regression. The alternative to this is that the proportion was dif-
ferent in the two groups.

(b)  There was no signifi cant difference in the proportions reporting devel-
opmental regression during the 20-year period, as the p-value for this 
difference was >0.05 (technically speaking – there is insuffi cient evi-
dence to reject the null hypothesis at the 5% level).

(c) There was no signifi cant difference in the proportions reporting bowel 
problems during the 20-year study period, as the p-value for this dif-
ference was >0.05 (technically speaking – there is insuffi cient evidence 
to reject the null hypothesis at the 5% level).

(d)  The 95% CI shows that the difference in the percentages with bowel 
problems between those with developmental regression and those 
without is estimated to be at least as large as 4.2% and may be as great 
as 21.5%. Since this interval excludes 0, there is good evidence for a 
real difference in the population from which the samples come. The 
p-value for this difference would be <0.05 (in fact it is 0.003).

4. (a)  This is the standard error. Estimates of population values vary from 
sample to sample and therefore have a theoretical distribution: the 
sampling distribution. The standard error of an estimate is a measure 
of the variability of this distribution. The standard error is the stan-
dard deviation of the sampling distribution of the sample estimate. 
The standard error therefore provides information about the preci-
sion of the estimate and is used to calculate confi dence intervals 
around the estimates. Here the value of 0.68 is the standard error of 
the percentage of pre-term births. The units of the standard error are 
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the same as for the sample estimate itself; here percentage points. The 
standard error is used to assess the spread of the mean whilst the 
standard deviation assesses the spread of the patients.

(b)  This is the 95% CI. It is a range of values which we anticipate will 
contain the true population percentage of pre-term births, for 95% of 
samples. This is in the sense that if a large number of samples were 
taken from the same population, then 95% of the calculated confi -
dence intervals would contain the population percentage. This implies 
that 5% of these samples would not contain the true population per-
centage. Here we deduce that the population value is very likely to 
lie between 6.1% and 8.8%, but our best estimate of it is 7.5%.

(c) If 90% limits were used the confi dence interval would be narrower 
and fewer (90% rather then 95%) confi dence intervals from possible 
repeats of the study would contain the population incidence. The 90% 
limits would be 6.4 to 8.6%.

(d)  If 99% limits were used the confi dence interval would be wider and 
more (99%) confi dence intervals from possible samples would contain 
the population incidence. Thus there would be less chance of being 
wrong but the range of possible population values would be greater 
(the 99% confi dence limits would be 5.8 to 9.2%).

(e)  The Danish study included many more subjects than the UK study 
and so the estimate of the pre-term birth incidence is much more 
precise. Hence, the 95% CI is narrower. There were 3% more pre-
term in the UK study than in the Danish study and the two 95% CI 
do not overlap. Hence there is some evidence for a real difference 
although this (non-overlapping confi dence intervals) is not a formal 
signifi cance test.

Chapter 8

1. (a)  H0: No difference in mean 24-hour total energy expenditure between 
lean and obese groups of women i.e. μLean − μObese = 0.0 MJ/day.

  HA: There is a difference in mean ulcer-free weeks between interven-
tion and control groups i.e. μLean − μObese ≠ 0.00 MJ/day.

Note that: In this case the two groups are independent (measurements are 
not on the same individuals). Therefore we are interested in the difference 
between the means of each group.

(b)  Independent two-sample t-test for comparing means
Assumptions: Two ‘independent’ groups, continuous outcome vari-
able, outcome data in both groups are Normally distributed. Outcome 
data in both groups have similar standard deviations.
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Where n1 = number of subjects in 1st sample, 13
 s1 = standard deviation of 1st sample, 1.24
 n2 = number of subjects in 2nd sample, 9
 s2 = standard deviation of 2nd sample. 1.40 

SE of difference SE (d)= = × + =1 306
1

13
1
9

0 57. .

t = − = −8 07 10 30
0 57

3 946
. .

.
.

on 13 + 9 − 2 = 20 df

What does P = 0.001 mean? The results are unlikely when the null hypothesis 
is true. Is this result statistically signifi cant? The result is statistically signifi cant 
because the P-value is less than the signifi cance level (α) set at 0.05 or 5%.

Decision: There is suffi cient evidence to reject the null hypothesis and 
accept the alternative hypothesis that there is a difference in mean 24-hour 
total energy expenditure (MJ/day) between the Lean and Obese groups of 
women.

(c) The 100 (1 − α)% confi dence interval for the difference in the two 
population means is

d–[t1−α × SE(d)] to d + [t1−α × SE(d)]

Where d = x̄1 − x̄2 and t1−α is taken from the t distribution with n1 + n2 − 2 
degrees of freedom. E.g. 13 + 9 − 2 = 20 df, so for a 95% confi dence interval 
t0.05 = 2.086. The 95% CI for the population difference in the two population 
means is then given by:

−2.23 − (2.086 × 0.57) to −2.23 + (2.086 × 0.57)
   − 3.41 to −1.05 MJ/day

Therefore we are 95% confi dent that the true population mean difference 
in 24 hour total energy expenditure (MJ/day) between Lean and Obese 
women lies somewhere between −3.41 to −1.05 MJ/day, but our best 
estimate is −2.23 MJ/day. So the result is consistent with women in the 
obese group having a higher total energy expenditure than women in the 
lean group.

�
The probability of the observing this test 
statistic or more extreme under the null 
hypothesis is 0.001 using the t distribu-
tion on 20 df
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2. (a)  H0: No difference in outcomes, proportion of CFS, patients feeling 
better at 6 weeks between the magnesium and placebo treated groups, 
i.e. πMagnesium − πPlacebo = 0.0.

  HA: There is a difference in outcomes, proportion of CFS patients 
feeling better at 6 weeks between the magnesium and placebo treated 
groups, i.e. πMagnesium − πPlacebo ≠ 0.00.

We can test this null hypothesis by a z-test comparison of two proportions 
or a chi-squared test. We could also use Yates’ continuity corrected chi-
squared test or Fisher’s exact test. All four tests result in p < 0.001.

What does P = 0.001 mean? Your results are unlikely when the null hypoth-
esis is true.

Is this result statistically signifi cant? The result is statistically signifi cant
because the p-value is less than the signifi cance level (α) set at 0.05 or 
5%.

Decision: That there is suffi cient evidence to reject the null hypothesis.
Therefore there is reliable evidence of a difference in the proportion feeling 
better at 6 weeks between the Magnesium and Placebo treated patient 
groups.

(b) pMagnesium = 12/15 = 0.80
pPlacebo = 3/17 = 0.176
pMagnesium − pPlacebo = 0.80 − 0.176 = 0.624
SE (pMagnesium − pPlacebo) = 0.139

 95% CI:

0.624 − (1.96 × 0.139) to 0.624 + (1.96 × 0.139)
0.351 to 0.896

Therefore we are 95% confi dent that the true population difference in the 
proportions of CFS patients feeling better at 6 weeks between the Magne-
sium and Placebo treated groups lies somewhere between 35% to 90%, but 
our best estimate is 62%.

So the result is consistent with CFS patients in the Magnesium group 
having a better outcome, and feeling better than patients in the Placebo 
group.

3. (a)  H0: No difference (or change) in mean daily dietary energy intake (kJ) 
over 10 pre-menstrual and 10 post-menstrual days in normally men-
struating female subjects i.e. μPre-menstrual− μPost-menstrual = 0.0 KJ.

   HA: There is a difference (or change) in mean daily dietary energy 
intake (kJ) over 10 pre-menstrual and 10 post-menstrual days in nor-
mally menstruating female subjects μPre-menstrual − μPost-menstrual ≠ 0.00 KJ.
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Note that: In this case the two groups are paired and not independent (meas-
urements are made on the same individuals). Therefore we are interested in 
the mean of the differences not the difference between the two means (not 
independent groups). We can use a paired t-test to test the null hypothesis.

(b) Assumptions for paired t-test:

  The dis, differences in pre- and post-menstrual dietary intake are 
plausibly Normally distributed. (Note it is not essential for the original 
observations to be Normally distributed).
 The dis are independent of each other.

Computer Output

What does P = 0.001 mean? Your results are unlikely when the null hypothesis 
is true.

Is this result statistically signifi cant? The results is statistically signifi cant
because the P-value is less than the signifi cance level (α) set at 0.05 or 5%.

Decision: That there is suffi cient evidence to reject the null hypothesis and 
accept the alternative hypothesis that there is a difference or change in mean 
daily dietary intake (kJ) between pre- and post-menstrual phases of the cycle 
in normal menstruating female subjects.

(c) We are 95% confi dent that the true population difference in mean 
daily dietary intake between the 10 pre-menstrual and 10 post-

Paired Samples Statistics

    Std  Std. Error
   Mean  N deviation Mean

Pair Pre-menstrual dietary 6753.636 11  1142.123 344.3631
1 intake (kJ/day)
 Post-menstrual 5433.182 11  1216.833 366.8888
 dietary intake (kJ/day)

Paired Samples Test

  Paired Differences

      95%confi dence
    

Std.
 interval of the

   
Std error

 difference     
Sig.

  Mean deviation mean Lower Upper t df (2-tailed)

Pair Pre-menstrual
1 dietary intake
 (kJ/day) −

 1320.455 366.74551 110.5779 1074.072 1566.838 11.941 10 .000
 Post-menstrual
 dietary intake
 (kJ/day)
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 menstrual days, in normal healthy women, lies somewhere between 
1074 to 1567 kJ, but our best estimate is 1320 kJ. So the result is con-
sistent with normally menstruating females having a higher mean 
daily dietary intake in the 10 post-menstrual days than the 10 pre-
menstrual days of their cycle.

Chapter 9

1. (i) A = 1.198 B = 2.92  (ii) Yes. Assumption is that the effect of medication 
is the same for both sexes  (iii) 94.18  (iv) 79.41  (v) No, the R-
squared value is very small. Only about 5% of the variation is accounted for.

2. (i) A = 0.812, B = 0.861, C = 1.392  (ii) No both P values are above 
0.05. The value of C 1.39 means that a person of a given age has an odds 
ratio (approximate relative risk) of being 40% more likely to consider 
their health poor.

Chapter 10

1. (a)  See Sections 10.1 and 10.4 for defi nitions of censored and hazard ratio
respectively.

(b)
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Kaplan–Meier estimate of the overall survival function (n= 10 intervention 
patients)
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(c) From the graph the estimated median survival times are 4.3 years and 
3.5 years for the Intervention and Control groups respectively. The 
log rank test is not signifi cant (p-value > 0.05), which implies we 
cannot reject the null hypothesis that the two groups come from the 
same population as regards survival times.

(d)  Only the terms for gender and histology are statistically signifi cant. In 
this sample age and treatment group (after allowing for the other 
covariates) are not associated with survival. Statistical signifi cance 
alone does not mean one could use the model for prediction. One 
should compare the observed and predicted outcomes.

(e)  The regression coeffi cient (hazard ratio) for the simple model contain-
ing treatment group alone suggests that, the risk of dying in the Inter-
vention Group (coded 1) is 0.92 times (95% CI: 0.74 to 1.13) that of 
the Control group (coded 0). This is of similar magnitude to the model 
with other covariates included. As we would expect the p-value from 
the Cox model (p = 0.391) is similar to the results of the log rank test. 
However, analysis 2 reassures us that there is no difference in overall 
survival between the two groups even after adjustment for age, gender 
and histology.

2. (a)  People with an acute hip fracture are 60% more likely to die in the 
fi rst year afterwards if they have respiratory disease. If one takes into 
account the age and sex of the patient, and their other risk factors, 
this is reduced to 40%.

(b)  Comorbid cardiovascular disease is a signifi cant risk factor in the 
univariate analysis. The reason why this appears to be not a risk factor 
in the multivariate analysis might be because people with comorbid 
cardiovascular disease are likely to be older (and possibly male) than 
those without. Thus given a person’s age and sex, comorbid cardio-
vascular disease is not a signifi cant risk factor.

(c) In addition to possibly the fact that people who get a chest infec-
tion may be older than those who do not, it is also likely that they 
have comorbid respiratory disease, so that given their age and respira-
tory disease, a chest infection is still important, but the hazard is 
halved.

(d)  The main assumption is that the risk factor remains constant over the 
year. This is likely with the comorbid states and with Parkinson’s
disease, but a chest infection is likely only to be a risk factor whilst 
the patient suffers it, and so the risk will revert to unity once the infec-
tion is cured.
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Chapter 11

1. k = 0.5, or only moderate agreement, so one would not substitute one 
method for the other.

2. k = 10, s si T
2 2 2 2 2 21 04 1 11 1 03 11 16 8 80 77 44∑ ∑= + + + = = =. . . . , . .…  and 

fi nally αCronbach
10

10 1
1

11 16
77 44

0 95
−

−⎛
⎝

⎞
⎠ =.

.
. . This indicates a high degree of con-

sistency and so may be regarded as satisfactory for clinical application.

Chapter 12

1. (a) Prevalence study  (b) unmatched case–control study  (c) retro-
spective cohort study  (d) cluster randomised trial  (e) quasi-
 experimental study.

2. Women who are given HRT may be better educated and informed than 
women not given it. Women who are better educated tend to have lower 
risk of heart disease.

3. OR = 61 × 324/(62 × 168) = 1.90. SE[log(OR)] = √(1/61 + 1/62 + 1/168 +
1/324) = 0.20. Thus 95% CI for log(OR) is 0.64 − 1.96 × 0.20 to 0.64 + 1.96 
× 0.20 or 0.248 to 1.032. Finally the 95% CI for the OR is exp(0.248) =
1.28 to exp(1.032) = 2.81.

Chapter 14

1. Here pPlan = 0.2, SEPlan = 0.025, thus from Section 14.5 m = 0.2 × (1 − 0.2) 
/ (0.0252) = 256. Allowing for a 20% refusal rate (often quite high in 
surveys) increases this to 256/0.8 = 320

2. The previous trial based on 554 patients had a 95% CI for the effect 
of 4.90 to 5.09. This leads to a SE = 0.10, so that a reasonable anti-
cipated value of the standard deviation for the new study is sPlan = 0.10 ×

554 = 2.35 or approximately 2.5. The anticipated effect size is dPlan =
0.5 mmol, then formula 14.1 gives m = 16 × (2.5/0.5)2 = 400 per group 
or N = 800 subjects in all, a withdrawal rate of 10% would bring this close 
to 900.

3. m = 2θ σ
δ

Plan
2

Plan
2

σ2
Plan = 272, δPlan = 10, α = 0.05 and 1 − β = 0.90, θ = 10.5 from Table 14.3.

m = (2 × 10.5) × (272/102) = 153.09
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This gives an approximate sample size of 154 in each group (308 in total).

4. We have π1 = 0.20 and π2 = 0.15, so δ = π1 − π2 = 0.20 − 0.15 = 0.05, and 
α = 0.05, 1 − β = 0.08.Using Table 14.1, to meet the conditions specifi ed 
for the trial we thus need to have 906 men in each group (1812 in total).

Chapter 15

1. This is a classic regression to the mean phenomenon. Since black-spots 
are chosen because their accident rates are high, one might expect, by 
chance that the rates would fall on re-measurement. This is less of a 
problem if the rates are consistently high for a number of years and then 
fall after the camera is installed, but one should also consider other aspects, 
such as whether accidents were falling generally over the period of 
interest.

2. Since this a randomised controlled trial, with a control group, the regres-
sion to the mean phenomenon does not apply to the comparison between 
groups, since it would be expected to apply equally to both groups. If other 
aspects of the trial are satisfactory (for example a high proportion of the 
eligible children took part in the trial, and a high proportion were follow-
up in both groups) then that is strong evidence for a casual effect. Whether 
it can be recommend depends on a number of factors: (i) the size of the 
effect: a very small effect may not be worthwhile; (ii) the cost of treatment: 
an expensive treatment may not be affordable; (iii) side effects: cod liver 
oil may have untoward gastro-intestinal effects that mean that it is unsuit-
able for many people.
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Table T1 The Normal distribution. The value tabulated is the probability, x, that a random variable. Normally distributed with mean 
zero and standard deviation one, will be greater than z or less than −z

z 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09

0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283
0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493
0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718
0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965
0.40 0.6892 0.6818 0.6745 0.6672 0.6599 0.6527 0.6455 0.6384 0.6312 0.6241
0.50 0.6171 0.6101 0.6031 0.5961 0.5892 0.5823 0.5755 0.5687 0.5619 0.5552
0.60 0.5485 0.5419 0.5353 0.5287 0.5222 0.5157 0.5093 0.5029 0.4965 0.4902
0.70 0.4839 0.4777 0.4715 0.4654 0.4593 0.4533 0.4473 0.4413 0.4354 0.4295
0.80 0.4237 0.4179 0.4122 0.4065 0.4009 0.3953 0.3898 0.3843 0.3789 0.3735
0.90 0.3681 0.3628 0.3576 0.3524 0.3472 0.3421 0.3371 0.3320 0.3271 0.3222
1.00 0.3173 0.3125 0.3077 0.3030 0.2983 0.2837 0.2891 0.2846 0.2801 0.2757



 

z 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09

1.00 0.3173 0.3125 0.3077 0.3030 0.2983 0.2937 0.2891 0.2846 0.2801 0.2757
1.10 0.2713 0.2670 0.2627 0.2585 0.2543 0.2501 0.2460 0.2420 0.2380 0.2340
1.20 0.2301 0.2203 0.2225 0.2187 0.2150 0.2113 0.2077 0.2041 0.2005 0.1971
1.30 0.1936 0.1902 0.1868 0.1835 0.1802 0.1770 0.1738 0.1707 0.1676 0.1645
1.40 0.1615 0.1585 0.1556 0.1527 0.1499 0.1471 0.1443 0.1416 0.1389 0.1362
1.50 0.1336 0.1310 0.1285 0.1260 0.1236 0.1211 0.1188 0.1164 0.1141 0.1118
1.60 0.1096 0.1074 0.1052 0.1031 0.1010 0.0989 0.0969 0.0949 0.0930 0.0910
1.70 0.0891 0.0873 0.0854 0.0836 0.0819 0.0801 0.0784 0.0767 0.0751 0.0735
1.80 0.0719 0.0703 0.0688 0.0672 0.0658 0.0643 0.0629 0.0615 0.0601 0.0588
1.90 0.0574 0.0561 0.0549 0.0536 0.0524 0.0512 0.0500 0.0488 0.0477 0.0466
2.00 0.0455 0.0444 0.0434 0.0424 0.0414 0.0404 0.0394 0.0385 0.0375 0.0366

z 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09

2.00 0.0455 0.0444 0.0434 0.0424 0.0414 0.0404 0.0394 0.0385 0.0375 0.0366
2.10 0.0357 0.0349 0.0340 0.0332 0.0324 0.0316 0.0308 0.0300 0.0293 0.0285
2.20 0.0278 0.0271 0.0264 0.0257 0.0251 0.0244 0.0238 0.0232 0.0226 0.0220
2.30 0.0214 0.0209 0.0203 0.0198 0.0193 0.0188 0.0183 0.0178 0.0173 0.0168
2.40 0.0164 0.0160 0.0155 0.0151 0.0147 0.0143 0.0139 0.0135 0.0131 0.0128
2.50 0.0124 0.0121 0.0117 0.0114 0.0111 0.0108 0.0105 0.0102 0.0099 0.0096
2.60 0.0093 0.0091 0.0088 0.0085 0.0083 0.0080 0.0078 0.0076 0.0074 0.0071
2.70 0.0069 0.0067 0.0065 0.0063 0.0061 0.0060 0.0058 0.0056 0.0054 0.0053
2.80 0.0051 0.0050 0.0048 0.0047 0.0045 0.0044 0.0042 0.0041 0.0040 0.0039
2.90 0.0037 0.0036 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028
3.00 0.0027 0.0026 0.0025 0.0024 0.0024 0.0023 0.0022 0.0021 0.0021 0.0020

 
TABLE T1

317



 

318 STATISTICAL TABLES

Table T2 Random numbers table

Each digit 0 –9 is independent of every other digit and is equally likely to occur.

94071 63090 23901 93268 53316 87773
67970 29162 60224 61042 98324 30425
91577 43019 67511 28527 61750 55267
84334 54827 51955 47256 21387 28456
03778 05031 90146 59031 96758 57420
58563 84810 22446 80149 99676 83102
29068 74625 90665 52747 09364 57491
90047 44763 44534 55425 67170 67937
54870 35009 84524 32309 88815 86792
23327 78957 50987 77876 63960 53986
03876 89100 66895 89468 96684 95491
14846 86619 04238 36182 05294 43791
94731 63786 88290 60990 98407 43473
96046 51589 84509 98162 39162 59469
95188 25011 29947 48896 83408 79684



 

Table T3 Student’s t-distribution. The value tabulated is tα such that if X is distributed 
as Student’s t-distribution with df degrees of freedom, then α is the probability that 
X � −trα or X � trα

df a

0.20 0.10  0.05  0.04  0.03 0.02 0.01 0.001

 1 3.078 6.314 12.706 15.895 21.205 31.821 63.657 636.6
 2 1.886 2.920  4.303  4.849  5.643  6.965  9.925  31.60
 3 1.634 2.353  3.182  3.482  3.896  4.541  5.842  12.92
 4 1.530 2.132  2.776  2.999  3.298  3.747  4.604  8.610
 5 1.474 2.015  2.571  2.757  3.003  3.365  4.032  6.869
 6 1.439 1.943  2.447  2.612  2.829  3.143  3.707  5.959
 7 1.414 1.895  2.365  2.517  2.715  2.998  3.499  5.408
 8 1.397 1.860  2.306  2.449  2.634  2.896  3.355  5.041
 9 1.383 1.833  2.262  2.398  2.574  2.821  3.250  4.781
10 1.372 1.812  2.228  2.359  2.528  2.764  3.169  4.587

11 1.363 1.796  2.201  2.328  2.491  2.718  3.106  4.437
12 1.356 1.782  2.179  2.303  2.461  2.681  3.055  4.318
13 1.350 1.771  2.160  2.282  2.436  2.650  3.012  4.221
14 1.345 1.761  2.145  2.264  2.415  2.624  2.977  4.140
15 1.340 1.753  2.131  2.249  2.397  2.602  2.947  4.073
16 1.337 1.746  2.120  2.235  2.382  2.583  2.921  4.015
17 1.333 1.740  2.110  2.224  2.368  2.567  2.898  3.965
18 1.330 1.734  2.101  2.214  2.356  2.552  2.878  3.922
19 1.328 1.729  2.093  2.205  2.346  2.539  2.861  3.883
20 1.325 1.725  2.086  2.196  2.336  2.528  2.845  3.850

21 1.323 1.721  2.079  2.189  2.327  2.517  2.830  3.819
22 1.321 1.717  2.074  2.183  2.320  2.508  2.818  3.790
23 1.319 1.714  2.069  2.178  2.313  2.499  2.806  3.763
24 1.318 1.711  2.064  2.172  2.307  2.492  2.797  3.744
25 1.316 1.708  2.059  2.166  2.301  2.485  2.787  3.722
26 1.315 1.706  2.056  2.162  2.396  2.479  2.779  3.706
27 1.314 1.703  2.052  2.158  2.291  2.472  2.770  3.687
28 1.313 1.701  2.048  2.154  2.286  2.467  2.763  3.673
29 1.311 1.699  2.045  2.150  2.282  2.462  2.756  3.657
30 1.310 1.697  2.042  2.147  2.278  2.457  2.750  3.646

∞ 1.282 1.645  1.960  2.054  2.170  2.326  2.576  3.291
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Table T4 The χ2 distribution. The value tabulated is c2 (α), such that if X is distributed 
as χ2 with df degrees of freedom, then α is the probability that X ≥ c2

0 χ2 (α)

α

df a

  0.2  0.1  0.05 0.04  0.03 0.02 0.01 0.001

 1  1.64  2.71  3.84  4.22  4.71  5.41  6.63 10.83
 2  3.22  4.61  5.99  6.44  7.01  7.82  9.21 13.82
 3  4.64  6.25  7.81  8.31  8.95  9.84 11.34 16.27
 4  5.99  7.78  9.49 10.03 10.71 11.67 13.28 18.47
 5  7.29  9.24 11.07 11.64 12.37 13.39 15.09 20.52
 6  8.56 10.64 12.59 13.20 13.97 15.03 16.81 22.46
 7  9.80 12.02 14.07 14.70 15.51 16.62 18.48 24.32
 8 11.03 13.36 15.51 16.17 17.01 18.17 20.09 26.13
 9 12.24 14.68 16.92 17.61 18.48 19.68 21.67 27.88
10 13.44 15.99 18.31 19.02 19.92 21.16 23.21 29.59

11 14.63 17.28 19.68 20.41 21.34 22.62 24.73 31.26
12 15.81 18.55 21.03 21.79 22.74 24.05 26.22 32.91
13 16.98 19.81 22.36 23.14 24.12 25.47 27.69 34.53
14 18.15 21.06 23.68 24.49 25.49 26.87 29.14 36.12
15 19.31 22.31 25.00 25.82 26.85 28.26 30.58 37.70
16 20.47 23.54 26.30 27.14 28.19 29.63 32.00 39.25
17 21.61 24.77 27.59 28.45 29.52 31.00 33.41 40.79
18 22.76 25.99 28.87 29.75 30.84 32.35 34.81 42.31
19 23.90 27.20 30.14 31.04 32.16 33.69 36.19 43.82
20 25.04 28.41 31.41 32.32 33.46 35.02 37.57 45.32

21 26.17 29.61 32.67 33.60 34.75 36.34 38.91 47.00
22 27.30 30.81 33.92 34.87 36.04 37.65 40.32 48.41
23 28.43 32.01 35.18 36.13 37.33 38.97 41.61 49.81
24 29.55 33.19 36.41 37.39 38.62 40.26 43.02 51.22
25 30.67 34.38 37.65 38.65 39.88 41.55 44.30 52.63
26 31.79 35.56 38.88 39.88 41.14 42.84 45.65 54.03
27 32.91 36.74 40.12 41.14 42.40 44.13 47.00 55.44
28 34.03 37.92 41.35 42.37 43.66 45.42 48.29 56.84
29 35.14 39.09 42.56 43.60 44.92 46.71 49.58 58.25
30 36.25 40.25 43.78 44.83 46.15 47.97 50.87 59.66



 

Table T5 Normal ordinates for cumulative probabilities. The value tabulated is z such 
that for a given probability α, a random variable, Normally distributed with mean zero 
and standard deviation one will be less than z with probability α.

α

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 −2.33 −2.05 −1.88 −1.75 −1.64 −1.56 −1.48 −1.41 −1.34
0.10 −1.28 −1.23 −1.17 −1.13 −1.08 −1.04 −0.99 −0.95 −0.92 −0.88
0.20 −0.84 −0.81 −0.77 −0.74 −0.71 −0.67 −0.64 −0.61 −0.58 −0.55
0.30 −0.52 −0.50 −0.47 −0.44 −0.41 −0.39 −0.36 −0.33 −0.31 −0.28
0.40 −0.25 −0.23 −0.20 −0.18 −0.15 −0.13 −0.10 −0.08 −0.05 −0.03
0.50 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23
0.60 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50
0.70 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81
0.80 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.17 1.23
0.90 1.28 1.34 1.41 1.48 1.56 1.64 1.75 1.88 2.05 2.33
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absolute risk difference (ARD) 17,
229

absolute risk reduction (ARR) 17, 18
acupuncture study 66, 86, 92
age-specifi c mortality rate 

(ASMR) 219–20
agreement between methods, Bland–

Altman plots 211, 212
agreement between observers 206–8

Cohen’s kappa 207–8
weighted kappa 208

agreement by chance 207, 214–15
AIDS data 162, 163
anaemia in women (survey) 150–1, 152,

153, 155, 156, 157, 158, 159, 160, 161,
165, 166–8, 169–70, 170–1,
172

analysis of variance (ANOVA) 
method 131

APACHE scores 57, 58, 59
approximate relative risk 19, 20
aspiration risk study 55, 56
aspirin study 110

association
and agreement 211
correlation coeffi cient as measure 151, 

211
attributable risk (AR) 229

worked example 230
average see mean

baby weight-change study 280–1
balanced randomisation techniques 

245–6
bar charts 21–2, 42

clustered 22–3
baseline adjustments 280–1
Bayes’ Theorem 51–7

formula 53
illustrative application 53

before-and-after studies 224–5, 247
behavioural therapy trial 267
‘bell-shaped’ distribution see Normal 

distribution
between-subject standard deviation 204, 

213

Note: boxed text is indicated by emboldened page numbers, and Figures and Tables by 
italic numbers
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between-subject variance 213
between-subject variation 39, 41
bias, in cross-sectional studies 223
bimodal distribution 30
binary data 6, 14

comparing outcomes 16–19
labelling outcomes 16
regression analysis see logistic 

regression
sample size calculations 264, 265, 

268–71
binary diagnostic choice 207
binary logistic regression 169
Binomial distribution 64–5, 66

population parameters 65, 94
for comparing two groups 95, 114

probability distribution function 75
birthweight surveys 69, 72, 73, 74, 82, 83,

90
Bland–Altman plots 211, 212
blinding, clinical trials 10, 248
blocked randomisation 245–6
blood pressure 3, 8, 9, 11, 104
Bonferroni correction 289
box–whisker plot 36, 37
Bradford Hill, Austin 243
Bradford Hill criteria 237–8
brain water content MRI study 162, 164
breast cancer study 250
breast self-examination trial 253–4

cannabis study 20, 20, 21
case–control studies 231–7

analysis by matching 235
confounding in 236
design 231–2
limitations 237
logistic regression used in 172
matched design 234–5
notation 232, 234
over-matching 236
paired data in 136–8
selection of controls 235–6
Simpson’s paradox 236
unmatched design 232–3

case-referent studies see case–control 
studies

categorical classifi cations, kappa statistic 
used 208

categorical data 6–8, 6, 13–25
displaying 21–3
summarising 14–21

categorical outcomes
comparison of two groups of paired 

observations 136–8
comparison of two independent 

groups 132–6
causality, Bradford Hill criteria 237–8
causality/causation

and association 237–8
and correlation 174

censored observations (in survival 
analysis) 182, 184

absence in (example) trial 185
causes 184
and Kaplan–Meier survival curve 

186
censored survival time 184
Central Limit Theorem 84–5, 91
central tendency 28
chi-squared distribution, table(s) for 135, 

136, 320
chi-squared test(s) 126, 132

for association in r x c contingency 
table 134–6

for trend in 2x c table 136, 143
with Yates’ continuity correction 126,

132, 135, 136
chlamydial infection studies 172, 173,

174, 224
cholesterol, change in 283, 284
chronic fatigue study 105
chronic obstructive pulmonary disease 

(COPD), physiotherapy trial 87–8,
93, 101

cigarette smoking, effects 3, 17, 230
clinical importance, distinguished from 

statistical signifi cance 111, 288
clinical trial 242

historical controls 244
subject withdrawals 271–2
see also randomised controlled trial

closed questions 221, 222
cluster randomised trials 252–3
clustered bar chart 22–3
coeffi cient of variation (CV) 203
Cohen’s kappa 207–8

worked example 207–8
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cohort studies 227–31
attributable risk 229
design 227–31
interpretation 230, 231
notation used 228
progress 228
relative risk ratio 227
size 231
slate-workers example 228, 229, 230

comparison of more than two groups 
131

comparison of two groups
independent groups

categorical outcomes 132–6
with continuous outcomes 

125–31
paired observations

with categorical outcomes 136–8
with continuous outcomes 119–25

confi dence interval (CI)
clinical importance distinguished from 

statistical signifi cance by using 111
for difference in means 93, 122, 123,

127, 128
for difference in proportions 93, 133, 

144
for hazard ratio 192–3
for mean 89–91
for odds ratio 239
for proportion 91–2, 95, 95–6
for rate 92
relationship to statistical 

signifi cance 112
for relative risk 238–9

confounding
in multiple regression 166–7

adjusting for differences 167–8
in observational studies 4–5, 236

confounding factors 5, 218
CONSORT statement 258
contingency table(s) 15, 16

chi-squared test for association 
in 134–6

continuous data 6, 8
dichotomisation of 8, 175
displaying 34–9
probabilities for 68–9
regression analysis see linear 

regression

sample size calculations 264, 265, 267
summarising 28–34

continuous outcomes
comparison of two groups of paired 

observations 119–25
comparison of two independent 

groups 125–31
contraceptive pill, deep vein thrombosis 

risk 18
control subjects/groups 10, 18

lacking in before-and-after studies 
225

convenience samples 81–2, 223
correlation 150, 151–6

and causation 174
compared with regression 150, 

165–6
signifi cance test 155–6

correlation coeffi cient 151–3, 175–6
inappropriate use 153–5, 211
as measure of association 151, 

211
scatter plots showing different 

correlations 153
worked example 176

count data 6, 8, 14, 131
Cox proportional hazards regression 

model 194–7
technical example 195
worked example 195

Cronbach’s alpha 209
calculation 213–14

cross-over trials 119, 136, 251–2, 279
diffi culties 252

cross-sectional studies 172, 222–4
compared with other observational 

study designs 224
sampling schemes 222–3

cross-tabulated data 15, 16, 132
crude mortality rate (CMR) 15, 46, 47,

219
cumulative survival probability 186–7

plot against time (K-M curve) 187, 189

data
display of 11

categorical data 21–3
continuous data 34–9

types 5–9
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‘data-dredging exercises’ 289
death rate(s) 15, 46, 47, 193, 219–20
degrees of freedom 33, 139–40

omission from results 279
design of study 4–5, 11
diabetes trials 251, 253
diagnostic tests 49–51, 60, 73

sensitivity 49–51
specifi city 49–51
uses 49

dichotomisation of continuous data 8, 175
difference in means 93, 95, 114

confi dence interval for 93, 122, 123,
127, 128

standard error for 87–8, 95, 121, 123,
127, 128

difference in proportions 93, 95, 114
confi dence interval for 93, 133, 144
standard error for 88, 95, 133, 144

difference in rates
confi dence interval for 93
standard error for 95

discrete data 8, 131
probabilities for 64–7

dispersion measures 28, 30–3
distributions 63–77

bimodal 30
Binomial 64–5, 66, 75
Normal 69–73, 316–17
Poisson 66–7, 75–6
skewed 38–9

dot plots 34, 35, 83
double-blind randomised trials 10, 248

effect size 265–6
endometrial cancer study 5, 7, 30, 33, 39
equivalence trials 249–50
evidence-based medicine 2
excess risk 229
exchangeable error 213
exploratory data analysis 288–90

factorial design (randomised controlled 
trial) 247, 253–4

false-negative error (Type II error) 109, 110
false-negative rate 51
false-positive error (Type I error) 107, 

109, 110
false-positive rate 51

Fisher, R A 243
Fisher’s exact test 126, 134, 136, 141–2
‘fi shing expeditions’ 288–9
fl uoridated water supplies study 4

confounding variables in 4, 5
follow-up studies see cohort studies
forced expiratory volume (FEV1)

measurements 176
repeatability 213

forms, purpose 221
frequency probability 46–8

‘gold standard’ 49, 55, 60, 202
grab samples 223
graphical presentation 42

hazard rate 193
hazard ratio (HR) 190–3

calculation procedure 191–2
confi dence interval for 192–3
meaning of term 191
worked example 191
see also relative risk

‘healthy worker’ effect (in observational 
studies) 224, 231

heart disease diagnosis study 50
heart donor study 67, 87, 92
histograms 35–6, 36, 42, 68, 69, 86, 122,

129
choice of group interval 11

historical controls 244
hypertension 8, 49
hypothesis testing 105–8

incidence, meaning of term 219, 220
independence of events/observations 56, 

57
violation of 161

independent groups of data/observations
comparison of two groups

for categorical outcomes 132–6
for continuous outcomes 125–31

see also unpaired data
independent two-sample t-test 125–8
initial value, plotting change 

against 280–4
instantaneous death rate 193
intention-to-treat (ITT) analysis 248–9, 250
internal pilot studies 272
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internal reliability 203
internal validity 209
interquartile range 30, 33

calculation 31
interval scale 8, 9
intervention group 18
intra-class correlation coeffi cient 

(ICC) 204–5, 213

Kaplan–Meier (K-M) survival 
curve 185–7

calculation procedure 186–7
worked example 187, 188, 189, 192

kappa statistic 207–8
calculation 207, 214–15
limitations 208

Kruskall–Wallis test 131

laboratory experiments 11
labour in water/epidural anaesthetic 

trial 259, 268
least-squares estimates 158
leg ulcer trial(s) 119–21, 121–3, 124,

127–8, 128, 129, 131, 132, 135, 196, 197
likelihood ratio (LR) 54
Likert scale 221, 222
limits of agreement 211
linear regression 150, 156–65, 176–7

signifi cance test for 158–62
worked example 177
see also multiple regression

linear regression equation 157
linear relationship, in linear 

regression 158–9
log hazard ratio 195
log transformation 192, 279
logistic model

checking 173–4
consequences 173
with multiple variables 133, 170

logistic regression 150, 169–74
more than one independent 

variable 170–1
one independent variable 169
use in case–control studies 172

logit transformation 169
Logrank test 189–90

calculation procedure 189–90
worked example 188, 190

longitudinal studies see cohort 
studies

lower quartile 30, 31
lung cancer studies 3, 17, 218

McNemar’s test 138, 144
Mann–Whitney U test 126, 129–30, 131,

279
matched pairs 11, 119
matched-pairs case–control studies 

136–8, 234–5
maximum likelihood method 169
mean(s) 11, 28–9, 34

calculation 28
confi dence interval for 89–91
difference between 93, 95, 114

confi dence interval for 93, 122, 123,
127, 128

sample size calculation 274
standard error for 87–8, 95, 114

measured data 6, 8
measurements

reliability of 202
repeatability of 203–5
variability of 39–41, 203, 204

measures of dispersion/spread/
variability 28, 30–3

measures of location 28–30, 34
measures of symmetry 38–9
median 11, 29–30, 33, 34

calculation 29, 31
median survival time 190

hazard ratio and 192
worked example 190

medical literature, statistical knowledge 
required 2

meta-analysis 254–5
method comparison studies 210–12
mobile phone/glioma study 233
mode 30
model, regression equation as 157, 

164–5
model-based probability 48
multi-stage random sampling 220
multiple comparisons 289–90
multiple logistic regression 

equation 170–1
multiple logistic regression model 133, 

170
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multiple regression 166–8, 279, 282
multiple regression equation 166
multiplication rule of probabilities 

52
mutually exclusive events 56–7

neuroblastoma, children with 182,
183

nominal categorical data 6, 6
non-inferiority trials 249, 250
non-insulin-dependent diabetes trial 251
non-linear relationship, correlation 

coeffi cient not to be used with 154
non-parametric tests 138

factors affecting use 138
reasons for not using 139
see also Mann–Whitney U test; 

Wilcoxon signed rank test
non-randomised studies 224–7

pre-test/post-test studies 224–5
quasi-experimental designs 226

Normal distribution 69–73, 316–17
data transformation for 192, 279
population parameters 70, 94

for comparing two groups 95, 114
probability distribution function 76
residuals for linear regression 160

Normal probability plots 177–8
‘not signifi cant’ notation 279, 286
null hypothesis 100–2, 106

rejection/non-rejection of 106–8
number needed to treat (NNT) 17, 258–9
numerical data 6, 8

observational studies 217–40
confounding in 4–5, 236
contrasted with randomised controlled 

trials 5, 218
occupational studies, cross-sectional 

studies in 224
odds 19
odds ratio (OR) 19–21, 24

in case–control studies 20, 233, 234
confi dence interval for 239

in logistic regression 169, 172
confi dence interval for 170

one-sided tests 113
open questions 221, 222
ordered categorical data 6–7

ordinal data 6–7, 6
out-of-hours patient satisfaction 

questionnaire 209
outcome measure, standard deviation 265
outliers 29

checking in logistic regression 174
effect on correlation coeffi cient 154
effects on various measures 29, 30
in method comparison studies 212

p-value(s) 103–4
interpreting 107, 110
one-sided 113
two-sided 112–13

Paediatric Asthma Quality of Life 
Questionnaire (PAQLQ) 205

paired data, exact test for 144
paired observations

comparison of two groups
for categorical outcomes 136–8
for continuous outcomes 119–25

paired t-test 120, 121–3, 279
parallel group randomised trial 250, 

251
parameters 64, 80
pathology review (example) 207–8
patient consent (in clinical trials) 256
patient consultation study 250
Pearson chi-square 132, 135
Pearson correlation coeffi cient 156, 

175
inappropriate use 205

percentages, checking 24
pie chart 22
Poisson distribution 66–7

population parameters 66, 94, 95
probability distribution function 

75–6
Poisson random variable 66
pooled estimate 101, 102
population attributable risk 229
population mean 81

confi dence interval for 89
population parameters 81, 157

least-squares estimates 158
populations 80–1
post-marketing surveillance 231
postal questionnaires 222–3

response rates 223
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postnatal urinary incontinence study 88,
93, 102

postoperative fever duration (trial) 
185

power of test/study 109, 110, 264
pragmatic trials 248–9
pre-test/post-test studies 224–5
predictive value of test 51–2

applications 54, 55
pregnant women, metabolic rate 

study 284, 285, 286, 287
presentation of data

graphs 42
tables 43

prevalence 220, 270
worked example 270–1, 271

probability
frequency-based 46–8
model-based 48
subjective 48–9
types 46–9

probability distribution 64
examples 65

probability distribution function(s) 64
Binomial distribution 75
Normal distribution 76
Poisson distribution 75–6

prolactin concentration study 74–5, 95–6
proportional hazards model 194–7
proportion(s) 14, 17

confi dence interval for 91–2, 95, 95–6
difference between 93, 95, 114

confi dence interval for 93, 133, 
144

sample size calculation 273
standard error for 88, 95, 114, 133, 

144
standard error for 85–6, 94, 270

prospective studies see cohort studies
pulse rate

factors affecting 41
variability 39, 40–1, 40, 203

qualitative data 6–8, 6
describing 14–21
displaying 21–3

quantitative data 6, 8
describing 28–34
displaying 34–9, 42–3

quartiles 30–1
calculation 31

quasi-experimental studies 226
disadvantages 226
example 226–7

questionnaires 10, 221–2
design 221–2
measure of internal consistency 209, 

213
purpose 221
types of questions 221–2

quota samples 223

random numbers table(s) 84, 220, 245, 
318

random sample 81, 220
random variable 64
random variation 41
randomisation 242–3

balanced/blocked/restricted 245–6
how to do 246–7
methods 244–6
minimisation method 246
reasons for 243
simple 244–5
stratifi ed 246

randomised controlled trial(s) 
241–60

‘blind’ assessment 248
cluster designs 252–3
contrasted with observational studies 5, 

218
cross-over designs 251–2
design features 247–50, 256–7

checklist 257
in protocol 255

design options 250–4
double-blind trials 10, 248
equivalence trials 249–50
explanatory trials 248
factorial designs 247, 253–4
follow-up 248
intention-to-treat analysis 248–9, 

250
meta-analysis of 254–5
methods of randomisation 244–6
need for control group 247
non-inferiority trials 249, 250
‘number needed to’ as measure 258–9
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parallel designs 250, 251
patient entry criteria 243–4, 247, 255, 

260
personnel and their roles 255
pragmatic trials 248–9
presentation of data and report 257–8
protocol for 243, 255–6
size 256, 264
statistical analysis of data 256, 

257–8
subject withdrawals 271–2
treatment choice 247–8

range 30
calculation 31

ranks 7–8
rate(s) 14, 15, 219

calculation 219
confi dence interval(s) for 92
standard errors for 85–6, 87, 94

ratio 14
see also hazard ratio; odds ratio; risk 

ratio
ratio scale 8–9
reference interval 33, 74
reference range 73–4

examples 74–5
regression

compared with correlation 150, 
165–6

see also linear regression; logistic 
regression

regression coeffi cient(s)
Cox model 195
linear regression 157
logistic regression 169
multiple regression 166

regression line 156–8
regression model, prediction using 

164–5
regression to mean 281–3
relative frequency histograms 35, 68
relative (receiver) operating characteristic 

(ROC) curve 
57–9

analysis 59
area under curve (AUC) 59
example 58

relative risk (RR) 17, 18, 24
approximate 19, 20

in cohort study 227
confi dence interval for 238–9

estimation in case–control studies 172, 
233

meaning of term 191, 227
see also hazard ratio

reliability 202–3
repeatability 203–5
repeated measures 284–7

invalid approaches 286–7
valid approaches 287

representative sample 10
research hypothesis 100
residuals

linear regression 158–9
independence 161–2
non-randomness 162, 163
plot against fi tted values 159, 

160
plot against Normal ordinates 160, 

161, 178
logistic regression 174

resting carotid pulse rate, variability 39,
40, 281

restricted randomisation techniques 
245–6

retrospective studies see case–control 
studies

risk 14, 17, 218–19
risk ratio (RR) 17
Royal Statistical Society, logo 5
running speed, prediction from pulse 

rate 164

safety advice, telephone survey 207
sample choice 10
sample mean(s) 82, 100

standard deviation 82
sample size calculations 9–10, 261–75

binary data 264, 265, 268–71
continuous data 264, 265, 267
effect size 265–6
reasons for 262

sample statistics 81
samples 81–2
sampling frame 81
scatter plots 37, 38, 152

with different correlations 153
regression line fi tted 157, 163
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residuals from linear regression 159,
160, 163

selection bias 223, 224
sensitivity of test 49–51

example 57
ROC curves 58

signifi cance level 105, 106, 107
signifi cance test of correlation 155

assumptions underlying 156, 165–6
signifi cance test of regression 158, 165

assumptions underlying 158–64, 165–6
simple randomisation 244–5
Simpson’s paradox 236

illustrative example 236, 237
skewed distributions 38–9
slate-workers study 228, 229, 230
smoking cessation study 18, 19
smoking-effect studies 3, 17, 230
Spearman rank correlation 

coeffi cient 156, 165, 176
special care baby unit study 15, 15, 16, 21,

22, 23, 28, 29, 31, 32, 35, 36, 37, 38, 
38, 68

specifi city of test 49–51
example 57
ROC curves 58

spirometers, agreement between 211,
212

spread, measures of 28, 30–3
standard deviation 31, 33, 33, 87

calculation 32–3
compared with standard error 87, 

94
of sample means 82

standard error(s) 82–4, 87
compared with standard deviation 87, 

94
for difference in means 87–8, 95, 121, 

123, 127, 128
for difference in proportions 88, 95,

133, 144
of differences 87–8
of mean (SEM) 82, 94
properties 83–4
of proportions and rates 85–6, 94, 270

Standard Normal distribution 70
area under 71, 72, 316–17
probability distribution function 76

standardised effect size 267

statistical analysis 11
factors affecting choice of method 118
pitfalls encountered 277–90

statistical calculations, validity 3
statistical inference

comparison of independent groups
categorical outcomes 132–6
continuous outcomes 125–31

comparison of paired observations
categorical outcomes 136–8
continuous outcomes 119–25

hypothesis testing 105–8
statistical signifi cance

distinction from clinical 
importance 111, 288

meaning of term 106, 107, 110, 123,
124, 128, 279

sample size and 9–10
statistical tests, factors affecting choice of 

test 118
statistics, reasons for use 3
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